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Abstract

Over the last decades, financial markets have undergone dramatic changes.
With the advent of the arbitrage pricing theory, along with new technology,
markets have become more e�cient. In particular, the new high-frequency
markets, with algorithmic trading operating on micro-second level, make it
possible to translate ”information” into price almost instantaneously. Such
phenomena are studied in the field of market microstructure theory, which
aims to explain and predict them.

In this thesis, we model the dynamics of high frequency markets using
non-linear hidden Markov models (HMMs). Such models feature an intuitive
separation between observations and dynamics, and are therefore highly con-
venient tools in financial settings, where they allow a precise application of
domain knowledge. HMMs can be formulated based on only a few parame-
ters, yet their inherently dynamic nature can be used to capture well-known
intra-day seasonality e�ects that many other models fail to explain.

Due to recent breakthroughs in Monte Carlo methods, HMMs can now be
e�ciently estimated in real-time. In this thesis, we develop a holistic framework
for performing both real-time inference and learning of HMMs, by combining
several particle-based methods. Within this framework, we also provide meth-
ods for making accurate predictions from the model, as well as methods for
assessing the model itself.

In this framework, a sequential Monte Carlo bootstrap filter is adopted to
make on-line inference and predictions. Coupled with a backward smoothing
filter, this provides a forward filtering/backward smoothing scheme. This is
then used in the sequential Monte Carlo expectation-maximization algorithm
for finding the optimal hyper-parameters for the model.

To design an HMM specifically for capturing information translation, we
adopt the observable volume imbalance into a dynamic setting. Volume imbal-
ance has previously been used in market microstructure theory to study, for
example, price impact. Through careful selection of key model assumptions,
we define a slightly modified observable as a process that we call scaled volume
imbalance. The outcomes of this process retain the key features of volume im-
balance (that is, its relationship to price impact and information), and allows an
e�cient evaluation of the framework, while providing a promising platform for
future studies. This is demonstrated through a test on actual financial trading
data, where we obtain high-performance predictions. Our results demonstrate
that the proposed framework can successfully be applied to the field of market
microstructure.
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Sekventiell mikrostrukturprediktering med dolda

Markovmodeller

Sammanfattning

Under de senaste decennierna har det gjorts stora framsteg inom finansiell
teori för kapitalmarknader. Formuleringen av arbitrageteori medförde möj-
ligheten att konsekvent kunna prissätta finansiella instrument. Men i en tid då
högfrekvenshandel numera är standard, har omsättningen av information i pris
börjat ske i allt snabbare takt. För att studera dessa fenomen; prispåverkan
och informationsomsättning, har mikrostrukturteorin vuxit fram.

I den här uppsatsen studerar vi mikrostruktur med hjälp av en dynamisk
modell. Historiskt sett har mikrostrukturteorin fokuserat på statiska modeller
men med hjälp av icke-linjära dolda Markovmodeller (HMM:er) utökar vi detta
till den dynamiska domänen.

HMM:er kommer med en naturlig uppdelning mellan observation och dy-
namik, och är utformade på ett sådant sätt att vi kan dra nytta av domän-
specifik kunskap. Genom att formulera lämpliga nyckelantaganden baserade
på traditionell mikrostrukturteori specificerar vi en modell—med endast ett
fåtal parametrar—som klarar av att beskriva de välkända säsongsbeteenden
som statiska modeller inte klarar av.

Tack vare nya genombrott inom Monte Carlo-metoder finns det nu kraft-
fulla verktyg att tillgå för att utföra optimal filtrering med HMM:er i realtid. Vi
applicerar ett så kallat bootstrap filter för att sekventiellt filtrera fram tillstån-
det för modellen och prediktera framtida tillstånd. Tillsammans med tekniken
backward smoothing estimerar vi den posteriora simultana fördelningen för varje
handelsdag. Denna används sedan för statistisk inlärning av våra hyperparame-
trar via en sekventiell Monte Carlo Expectation Maximization-algoritm.

För att formulera en modell som beskriver omsättningen av information,
väljer vi att utgå ifrån volume imbalance, som ofta används för att studera
prispåverkan. Vi definierar den relaterade observerbara storheten scaled volume
imbalance som syftar till att bibehålla kopplingen till prispåverkan men även
går att modellera med en dynamisk process som passar in i ramverket för
HMM:er. Vi visar även hur man inom detta ramverk kan utvärdera HMM:er i
allmänhet, samt genomför denna analys för vår modell i synnerhet. Modellen
testas mot finansiell handelsdata för både terminskontrakt och aktier och visar
i bägge fall god predikteringsförmåga.
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Chapter 1

Introduction

During the last couple of decades, financial markets have undergone dramatic
changes. With the advent of the Arbitrage Pricing Theory and new technology,
markets have become more e�cient. Through algorithmic trading, operating on
micro-second level, the new high-frequency markets make it possible to translate
”information” into price almost instantaneously. But what do we mean by the
concept of information and how can we quantify and measure it?

Those are topics which are being studied intensively by many research teams at
this very moment. The critical component when studying information is a concept
called price impact. This has been modelled in numerous di�erent ways, but almost
always with the common denominator that the models are static. This leads to a
number of unwelcome side-e�ects, such as failure to explain intra-day seasonality.

With this thesis, we aim to provide a framework for modelling and testing mar-
ket microstructure phenomena, like the the price impact, in a dynamic Bayesian
setting, using non-linear hidden Markov models. In particular, we define the scaled
volume imbalance, which is closely related to price impact, and develop a model for
successfully tracking this quantity using the provided framework.

1.1 Purpose
This thesis has two main purposes. The first purpose is to cast standard market
microstructure theory into a Monte Carlo framework by defining a hidden Markov
model for capturing and predicting realization of market information. In order to
justify this, we will provide insight to the adequacy of using hidden Markov models
in a financial context—with a focus on high-frequency markets—through thorough
discussions on model details and key assumptions. Based on these insights, we will
then define our hidden Markov model.

The second purpose is to show how recent particle-based Monte Carlo methods
can be combined into a holistic framework for studying such hidden Markov models.
We will define applicable forward and backward particle filters and discuss how they
together can be used to solve both the inference problem and the learning problem in

1



2 CHAPTER 1. INTRODUCTION

a super-e�cient way. In particular, we will show how these methods can be applied
to the hidden Markov model for making predictions, assessing model performance
and spotting market anomalies.

1.2 Thesis outline

In Chapter 2 we present all relevant theory needed for this thesis. The basics of
market microstructure theory are explained and a number of useful Monte Carlo
methods are derived. All algorithms are given in detail and proofs are provided or
outlined.

In Chapter 3 we define the scaled volume imbalance and develop a suitable
dynamic model to describe this quantity. We discuss all relevant assumptions and
benefits with this model, as well as its associated parameters, thoroughly.

In Chapter 4 we describe how sequential Monte Carlo methods can be used for
parameter and state inference in hidden Markov models, such as the one we have
defined for the scaled volume imbalance. This framework encompasses everything
from making inference about state parameters and making predictions, to learning
hyperparameters and providing methods for justifying the model.

In Chapter 5 we use the framework developed in Chapter 4 to study the model
defined in Chapter 3. The model is put to test using data obtained from Deutsche
Börse AG for trading in stock equity and futures contract instruments during a
period of two weeks in February, 2016. All relevant results are provided and ex-
plained. In the remaining part of this thesis strengths, weaknesses, possible room
for improvement and further extensions to the proposed framework are discussed in
the light of the results.

1.3 Delimitations

In this thesis we will define the scaled volume imbalance such that it will have a close
connection to price impact—similarly to the standard volume imbalance. However,
actually defining this relationship to price impact is considered out-of-scope.

The framework that we will develop in this thesis does not include any sensitivity
analysis in relation to the likelihood functions. This is considered superfluous in the
context of the other analyses. Also, the study of likelihood sensitivity is not critical
when assessing a single model.

When modelling the scaled volume imbalance we will not investigate the possibil-
ity of correlated parameter movements. Any such correlation is considered beyond
the scope of this thesis.

The sample interval length �t will not be considered part of the hyperparameter
set ◊. We will examine the impact on predictions for changes in �t, but we will not
set out to find an optimal value for this.
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Symbol Description
HMM Hidden Markov model
JSD Joint smoothing density
MC Monte Carlo
SMC Sequential Monte Carlo
›

i
1:t The trajectory from time 1 to t for particle i

{›

i}N
i=1 A set of N particle values

{›

i
, w

i}N
i=1 A set of N weighted particles, approximating the density of x

Xt The latent random variables of an HMM for a certain timestep t

xt The outcome of latent variables of an HMM for a certain timestep t

Yt The random variables associated with outcomes of an HMM for a certain timestep t

yt The observed outcomes of an HMM for a certain timestep t

„t:tÕ|T The JSD from time t to t

Õ, given observations up to time T

„

N
t The N -particle marginal filter density at time t

„

N
t:tÕ|T The N -particle JSD approximation from time t to t

Õ, given observations up to time T

„̂

N
t+1|t The N -particle predictive density, given the observations up to time t

Ï̂

N
MC An N -particle MC estimator of E [Ï(X)]

Table 1.1. Common notation used in this thesis.

1.4 Notation
We will write sequences of values in the short-hand notation x0:t

def= {x0, . . . , xt}.
Probability densities associated with distributions are in general denoted by p

throughout this thesis. Further, we will use the notation p(xk) to denote the
probability that Xk at a certain time k assumes the value xk under p, that is
p(xk) def= P(Xk = xk). Similarly, for a conditional distribution on some random
variable Yk we will write p(xk | yk) def= p(xk | Yk = yk).

Throughout this thesis we will consider distributions of xk conditional on se-
quences of historical outcomes of random variables {X0 = x0, . . . , Xk≠1 = xk≠1}.
Using the above notation, the probability density for this conditional distribution
simplifies to p(xk | x0:k≠1).

Dependency on any hyperparameters ◊ in distributions is indicated by a sub-
script. Thus, for a density p that depends on ◊ we will write p◊(x).

Together with this we employ the notation defined in Table 1.1, which is adopted
from contemporary Monte Carlo literature.





Chapter 2

Background and Preliminaries

In this chapter we will look at earlier relevant research and tools that we will make
use of in this study.

2.1 Market microstructure theory

The primary driving force in trading is information. Unless you are completely
indi�erent to the outcome of your investment, you will make the decision to trade
based on some kind of information that is available to you. By the term ”infor-
mation” we do not restrict ourselves to specific news events related the particular
asset itself, but include all information that is of interest when deciding on trading
strategies. This includes everything from the supply of the asset and the state of
the entity supplying the asset, to the collective buying power in the markets, as
well as the full utilities and strategies of each and every trading participant. These
di�erent sources of information can by divided into two di�erent categories; macro-
scopic and microscopic. Macroscopic information is what is usually known as the
fundamentals for the asset. This is a slow process. Microscopic information, on the
other hand, is the information held by all market participants—the traders—and
is a process that can be changing very rapidly. In this thesis we will focus on the
latter, which is studied in the field of market microstructure theory.

2.1.1 Background

In the early 1990’s computers were starting to make their way into financial markets.
This technological change lead to new conditions for the markets’ participants as
information became more readily available and the process of placing orders was
made easier. From the exchanges’ perspective the new technology enabled new ways
of collecting and keeping records of the trading activity. This record-keeping was
also enforced by the introduction of series of new regulatory laws, which were a
consequence of an increased demand for transparency.

5



6 CHAPTER 2. BACKGROUND AND PRELIMINARIES

Consequentially, researchers suddenly had transaction data of a much higher
quality than had ever been seen before at their disposal. With this, new opportuni-
ties to analyse trading dynamics and to describe what was actually going on in the
markets came into existence. Using this data from the computer-powered financial
exchanges, several groups of researchers set out to identify the mechanics of finan-
cial trading from a mathematical point-of-view. This branch of finance is today
known as market microstructure theory and center around the driving dynamics
of financial trading. A good summary on the foundation of market microstructure
theory can be found in the book by the same name by O’Hara [16].

Understanding the dynamics boils down to analysing the behaviour of the traders.
Beside detailed modelling of behaviour, market microstructure theory also encom-
passes everything from optimal trading strategies for reducing transaction costs, to
making inference on the amount of informed traders being active in the market at
any given point in time. In order to further explore internal dynamics of trading, a
new scientific sub-branch called Limit Order Book (LOB) modelling emerged in the
early 2000’s. Since then, many fascinating articles have been published that accu-
rately explain empirically observed phenomena—such as the concave price impact
in relation to volume—in the context of information.

In LOB modelling the complete order flow is generally assumed to carry infor-
mation. This means that all actions carried out by all traders together define the
preconditions for trading. Despite proposals of numerous models, we are yet to see
how to utilize the full width of information in circulation.

2.1.2 The volume imbalance

In [18] the concept of price impact is studied as an e�ect of demand fluctuations.
The volume imbalance � is defined as

�(t) def= QB ≠ QS =
Nÿ

i=1
qiai, (2.1)

where QB are the buyer-initiated transactions and QS are the seller-initiated
transactions. Further, q denotes the volume for each trade and a the sign of the
trade. This quantity is used to act as a proxy for the demand fluctuations in the
market. A distinct relationship between the volume imbalance and the price impact
is established through analysing a large number of US traded stocks spanning the
period of 1994-1995.

In the paper, � is presented purely as observations and used to explain price
impact. Therefore, no assumptions are made in relation to how the traded volume
is generated. In order to enable predictions of future price impact, the quantity
itself must be modelled in some way.
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2.1.3 Sources of information
The actions in the order book that are assumed to carry information (and thereby
possible sources of information) are the following [3, 6]:

(A) To place a limit order

(B) To cancel a limit order

(C) To place a market order

As the terminology di�ers slightly across platforms, we will walk through what we
mean by each of these. Beginning from the top, Action (A) means that a trader
enters an order to sell (or buy) q contracts for asset I at a price p. This limit order
goes into the orderbook for asset I and waits there for someone to accept this o�er.
The removal of such an o�er, is action (B).

The last action, (C), means that a trader has found an existing o�er that they
are willing to accept. They place a market order to hit this active limit order. The
result of this is that a trade is executed. A trade is an event where one trader pays
fiat currency to another trader in exchange for a certain number of contracts for a
financial asset.

2.1.4 Concave price impact
Price impact has been shown in many papers to be concave with respect to the
volume of a trade. In the paper by Plerou et al [18] (where the volume imbalance
was proposed) the functional form of this relationship is determined. In particular
the power-law

�p ≥ �—

is studied and applied successfully with values of — ranging from 1/3 up to 1. Here
�p is the expected price impact over the sampling time period �t, studied in terms
of �. The exponent is shown to increase with �t. This would suggest that the
number of trades could be playing a role here as well—not only the aggregated
volumes. Such scaling e�ects are seen in many areas of market microstructure
theory.

2.1.5 Trade-by-trade concavity
In [12] a similar approach is taken, also finding a power-law relation to price impact.
However, in their paper, the price impact of volume is studied in the context of
individual trades, rather than to an aggregated volume imbalance over time. They
express the price impact of a single trade, denoted �p, in terms of the trade’s
volume q, and sign a as
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�p = a

q

—

C

, (2.2)

where C is a liquidity constant. They find that — = 1/2 generally represents price
impact in high-capitalization stocks well. The approach to study price impact trade-
by-trade is successful, since it leads to slightly more consistent results.

2.2 Statistical definitions
In this chapter we will define relevant mathematical properties and concepts that
will be frequently used throughout this thesis.

2.2.1 Memorylessness
Any probability distribution satisfying the below identity is said to be memoryless.

P (X > t + s | X > t) = P (X > s) (2.3)

One way of explaining this property is to consider waiting times. Assume that
we have three trades that arrive at times t1, t2 and t3. The waiting times are then
defined as t2 ≠t1 and t3 ≠t2. If those waiting times are independent the trade flow is
said to be memoryless. To find out how suitable the assumption of memorylessness
is, it is often quite easy to imagine what causal implication would be caused by
memorylessness. This property is frequently used in LOB modelling.

In the continuous case, the only distribution having this property is the Expo-
nential distribution.

2.2.2 Markov chain
A Markov chain is a random process that makes discrete transitions in state-space.
Given a probability space (�, F ,P) with filtration {Ft, t = 0, 1, . . .}, the stochastic
process {Xt, t = 0, 1, . . .} adapted to the filtration is called a Markov chain if it
carries the below property.

P(Xk+1 = xk+1 | X0 = x0, . . . , Xk = xk) = P(Xk+1 = xk+1 | Xk = xk) (2.4)

This property is called the Markov property. The interpretation is that the transition
probabilities only depend on the present state—which could be thought of as a
type of memorylessness. Markov chains are well suited for making inference about
dynamic systems.

2.2.3 The inhomogeneous Poisson process
An inhomogeneous Poisson process is a counting process defined as the total number
of events up to point t in time. The di�erence N(t + �t) ≠ N(t) is a Poisson-
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Figure 2.1. A graphical representation of a hidden Markov model. The latent
variables x form a Markov chain and the outcomes y are conditionally independent.

distributed random variable with parameter ⁄t, which is defined by

⁄t =
⁄ t+�t

t
⁄(s)ds,

where ⁄(s) is the instantaneous value of the intensity.
In this thesis we will only be considering ⁄ as a parameter in a Markov chain

evolving on an equidistant grid defined by �t. Therefore, ⁄(s) will be a piece-wise
constant function. We use t to index the ⁄ parameter accordingly. An inhomoge-
neous Poisson process defined this way carries the memorylessness property in that
the inter-arrival times are exponentially distributed with the parameter ⁄t.

In most of the current LOB modelling literature only homogeneous Poisson pro-
cesses are used. This means that the parameter ⁄t is constant, hence not dependent
on t. By extending the parameter to be a function of time we can, for example,
successfully address the peculiarity called diurnality, which is the increased trading
at the beginning and the end of the trading day. A thorough discussion on the use
of Poisson processes in econometrics can be found in [2].

2.2.4 The hidden Markov model
A hidden Markov model (HMM) describes the evolution of a system consisting of a
set of latent variables x. The word ”latent” refers to the notion of these system vari-
ables being impossible to observe directly. Instead, they manifest through a series
of observations y. The latent variables form a Markov chain and the observations
are conditionally independent, given the latent variables (see Figure 2.1). As we
can see, at every point in time tk the process will have the state xtk and yield the
observable outcome ytk .

The HMM is defined by the underlying Markov chain of the latent variables,
along with the relationship between the outcomes and the latent variables. The
Markov chain in turn is defined by the evolution probabilities of the latent vari-
ables, called the transition kernel, with the associated transition density q, and
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the initial distribution ‰ of the variables. The observational relationship is defined
by the observation density p, which is the conditional distribution of yt | xt. The
densities depend on a set of hyperparameters ◊ and can take any possible shape,
hence allowing strongly non-linear behaviour. This is summarized by the following
relationships that together define the Markov chain.

Definition 1 (Hidden Markov model). A model with latent variables x forming
a Markov chain, with associated observable variables y that are conditionally in-
dependent given the latent variables, is called a hidden Markov model if it has a
transition kernel, observation density and initial distribution of the following form

yt | xt ≥ p◊(yt | xt)
xt+1 | xt ≥ q◊(xt+1 | xt)

x0 ≥ ‰(x0)

2.2.5 Maximum likelihood estimation
A technique often used is statistics is maximum likelihood estimation. Assume that
a sequence of outcomes y were generated by a function of some parameter ◊. In
order to formulate a good point estimator for ◊, we consider the likelihood function
for ◊, given the outcomes y. The likelihood function is written as

L(◊; y) = p◊(y),

where p◊(y) is the joint probability for the sequence of outcomes y for a specific ◊.
Using this definition, the maximum likelihood estimator (MLE) is defined as

◊̂ = arg max
◊

L(◊; y).

This gives the point estimator of ◊ for which we obtain the highest likelihood of
observing the specific sequence of outcomes y. From a Bayesian perspective, the
MLE coincides with the maximum a posteriori estimator of ◊ when a uniform prior
is assumed, i.e. when no prior information is held about the distribution of the (in
this case) random variable ◊.

2.2.6 The learning problem
The task of defining a mathematical model which can accurately reflect a system
is in the field of statistics called the learning problem. This includes everything
from making the choice whether to use a parametric or non-parametric model to
determining the model’s functional form.

The parameters by which the model is parametrized, are called hyperparame-
ters and are denoted by ◊. In this thesis we will address the learning problem by
computing the MLE of the hyperparameters. However, for doing so, there are still
some problems that we have to address. For example, the likelihood function is,
unfortunately, in general not analytically tractable.
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2.2.7 Expectation-maximization

For a hidden Markov model approach, the likelihood function generally becomes
intractable due to the nature of the latent variables x. It should be noted, though,
that this is not the case in, for example, systems with linear-dynamic variables
having Gaussian observation densities. In [1] a technique called data augmentation
i proposed to be used for addressing this intractability. The trick is to augment the
set of observed outcomes y0:T with the unobservable outcomes x0:T (the state). The
resulting set {x0:T , y0:T } is called the complete data.

By using the complete data it is possible to express the likelihood in terms of
the joint density by the relation

p◊(y0:T ) = p◊(x0:T , y0:T )
p◊(x0:T | y0:T ) . (2.5)

This construction is then used to formulate an expectation-maximization (EM) al-
gorithm for maximum likelihood estimation in scenarios with incomplete data. The
algorithm consists of the following two steps—(E) and (M)—that are repeated it-
eratively. The EM algorithm is summarized in Algorithm 1.

Algorithm 1: The EM Algorithm
Data: Initial guess ◊

Õ

Result: MLE ◊̂

while Stopping condition not met do

(E) Compute Q(◊, ◊

Õ) = E◊Õ [log (p◊(x0:T , y0:T )) | y0:T ]
(M) Update ◊

Õ = arg max◊œ� Q(◊, ◊

Õ)
end

Set ◊̂ = ◊

Õ

After the stopping condition has been met, the final ◊

Õ can be considered optimal
and thereby the learning problem is solved. We have outlined the proof for the EM
algorithm in Section 8.1.1 of the Appendix.

2.2.8 The state inference problem

In addition to model learning, we will in this thesis also address the state inference
problem. There are three types of state inference problems. In the HMM setting,
these problems are all in some way concerned with finding the posterior distribution
p◊(x | y), which is the state probability density, given the set of observed outcomes
y. The di�erence between the three problems can be expressed in terms of the time
period the inference is targeting. See the table below for the the target density
associated with each problem.
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Problem Target density

Smoothing problem p◊(x0:t | y0:t)
Filtering problem p◊(xt | y0:t)
Prediction problem p◊(xt+1 | y0:t)

It should be noted that, in general, the smoothing problem does not necessarily
concern the whole time-range from time 0, but is rather inference about any state
prior to t. In the same way the prediction problem, in general, refers to any inference
after t. Because of the di�erent nature of the problems, they will be tackled using
di�erent methods. However, by using the Monte Carlo framework it will be possibly
to do this in a synergistic way. This will be shown later in this thesis as we will
touch upon each of these problems in some way.

2.2.9 Single model approach

After the model has been defined, we are ready to evaluate, or assess, the model. In
a Bayesian setting, a model is generally not assessed on its own, but in the context
of one or more other models. It is, however, possible to justify a single model from
a Bayesian perspective as well. Even though the framework applied in this thesis
is not properly Bayesian, the approach outlined below can still be successfully used
for assessing HMMs.

In the 80’s a number of papers were published addressing how to properly assess
Bayesian models (see e.g. [19] and [20]). We have listed the three key features that
can be used for justifying a single model below.

1. Sensitivity to the prior and the likelihood

2. Legitimacy of the posterior

3. Fitness to data

The first item conveys the importance of checking the posterior distribution by
analysing how it is a�ected by changes in its two sub-components; the prior and
the likelihood. The topic concerned with analyses of this kind is known as robust
Bayesian analysis, or Bayesian sensitivity analysis. In the context of this thesis, this
translates into studying how sensitive the posterior is to changes in ◊. Regarding the
second item, this is often done by examining the resulting posterior distribution to
see that its associated properties are intuitively correct and satisfy the requirements.
For example, does the support of the posterior cover the observable space Y ? Does
the skewness correspond to what we expect it to be? Does the number of modes
correspond to what we expect it to be? And so on.

Still, regardless of all else, the most important feature of the selected model is
its fitness to actual data. If the model does not characterize the data appropriately,
the model cannot be justified.



2.3. MONTE CARLO METHODS 13

2.2.10 Posterior predictive checks
To address how to assess the fitness to data, a posterior predictive check is proposed
in [20]. To perform this, a test statistic T for the observed outcome yt+1 is compared
to that of a replicated observation y

rep
t+1, given the history of observed outcomes y1:t.

The models treated in his original papers are all static, meaning that the distribution
at time t + 1 is assumed to be the same as that of time t. This can, however, easily
be extended to the dynamic setting used in this thesis.

By the construction of the test statistics it is possible to define what is called
the posterior predictive p-value

p(yt+1) = P
!
T (yt+1) Ø T (yrep

t+1) | y1:t, ◊

"
. (2.6)

Note that the expression above will average p over the whole posterior. Thus, this
is basically a way of measuring the tail probability for some test statistic, given the
realized outcome.

The possibility of interpreting this entity as the standard p-value, to be used in
the same way as in the frequentist setting, has been discussed a lot in the literature.
In essence, by defining T in such a way that the properties associated with the
p-values are known, those properties can be used to formulate hypothesis tests.

2.3 Monte Carlo methods
In this section we will go through a number of sophisticated techniques to use for
learning and inference in hidden Markov models (see Definition 1), called Monte
Carlo methods. Proofs are provided where it is practical and in other places brief
outlines of the derivations of proofs are given.

For a basic walkthrough of established Monte Carlo methods see, for example,
[4] or [14] for good monographs on the subject. For more in-depth treatment of the
methods see, for example, the tutorial [9]. Also, for more recent convergence results
in some of the more advanced methods see, for example, [7, 17].

2.3.1 Background
The modern development of Monte Carlo methods started over sixty years ago by
Metropolis and Ulam [15]. This paper devised a method to solve integration of high-
dimensional physical di�erential equations by using randomly generated numbers.
Since then, the methods have advanced enormously and now covers a wide range
of problems, and they are currently used frequently in everything from molecular
biology to voice recognition and computer vision.

The way Monte Carlo methods work, is that by locating the part of the high-
dimensional space that has high importance, only a fraction of the space needs to
be covered to accurately approximate the integral. Therefore, by generating a sam-
ple of high importance from a random distribution, the target distribution can be
approximated via empirical probability density distributions. Empirical densities
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are discrete, but instead of handling this discrete property by employing an equidis-
tant grid, the Monte Carlo methods use a finite number of particles. By having
these particles approximate independent draws from the target density, we ensure
that every point holds a lot of information. This way, it is possible to construct
algorithms that are more computationally e�cient than using the standard numeric
integration.

Further, even more important, is the capability of approximating sequences of
target distributions well that the Monte Carlo methods have. By sequencing in
the time-dimension, this trait can be used for solving high-dimensional problems
over time. This is not limited to solving static systems, but was quickly adopted
to handle dynamic systems as well. In particular, using MC methods has proven
to be very successful in making inference about HMMs. The reason for this is that
making inference about a state-space model is equivalent to computing sequences of
posterior distributions. Given the usefulness of HMMs for making inference about
systems that evolve over time, a new type of models capable of making on-line
inference of such processes were developed. These are called sequential Monte Carlo
(SMC) methods. The foundation for SMC methods can be found in the book [8].
For a well-written and easily accessible introduction to SMC [9] is recommended.
By the use of SMC methods, it is possible to continuously update the inference as
new observations are made available.

SMC algorithms are usually utilized to compute the filtered marginal posterior,
rather than the full joint posterior. The reason behind this is that the SMC methods
are very good at telling where we are at the moment of the new observation, but
have trouble describing the bigger picture. This primarily due to a side-e�ect called
path degeneracy, which we will discuss further later in this section.

In recent days, there has been a spiking interest in improved backward smoothing
algorithms, which in combination with a regular forward SMC, can recover the
non-degenerate joint posterior distribution. An overview and comparison of such
algorithms can by found in [7].

2.3.2 Monte Carlo Integration

Before going into any more detail, we will first go through the intuition of Monte
Carlo integration. Assume that we want to compute an integral over some high-
dimensional space X. This problem often arises in the context of computing an
expected value

Ep [Ï(X)] =
⁄

X
Ï(X)p(X)dX, (2.7)

where X is a random variable on some probability space (X, X , p).
The way Monte Carlo methods deal with this is that instead of discretizing

the whole space X and integrating over every single point, the points to use for
integration are randomly drawn from the target density p.
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In most cases, however, the target density will be intractable and hence not
possible to sample from. In order to address this, several sophisticated methods
have been developed. Generally, a proposal kernel that emphasizes the important
regions of the integral is used. This keeps the complexity of the problem down
considerably compared to standard numeric integration.

2.3.3 The MC sampler
Any estimator for the integral (2.7) is generally called a Monte Carlo estimator.
For the purpose of this thesis, we will require the Monte Carlo estimator to carry
certain properties to guarantee its usefulness. This is summarized in the definition
below.

Definition 2 (MC estimator). An MC estimator Ï̂

N
MC is an estimator, that for any

random variable X on a probability space (X, X , p) and test function Ï : X æ R
has the following properties

[P1] (Almost sure convergence) Ï̂

N
MC

a.s.≠≠æ Ep[Ï(X)], N æ Œ

[P2] (Follows CLT)
Ô

N(Ï̂N
MC≠Ep[Ï(X)])

‡Ï

D≠æ N (0, 1), N æ Œ

Following the terminology in [8], we will call the simplest kind of MC estimator a
perfect MC sampler. This MC sampler is defined as

Ï̂

N
MC

def= 1
N

Nÿ

i=1
Ï(›i), (2.8)

where the values {›

i}N
i=1 are samples from the probability density p, associated

with the measure of the integral. The perfect MC sampler is an MC estimator,
as defined in Definition 2. The most interesting thing about this estimator is that
it can approximate the exact integral without any knowledge needed about the
theoretical distribution for p.

The convergence stated in [P1] follows directly from the strong law of large
numbers. To prove [P2], let ‡

2
Ï denote the variance of the random variable Ï(X).

Then the variance of the estimator is given by Var(Ï̂N
MC) = ‡

2
Ï/N . Looking at that

expression, we can see that if the variance of Ï(X) is bounded, then the variance
of the estimator is bounded, too. Following this, a central limit theorem can be
established and the rate of convergence is assured.

In addition to these two properties, this particular MC estimator is also un-
biased. However, this is not required for MC estimators in general. The focus is
instead set on the e�ciency of the estimator.

So far everything is well. However, in many applications of interest, sampling
from p is infeasible. For example, in a Bayesian setting, the target distribution is
usually a posterior distribution. If the prior distribution is not a conjugate for the
likelihood, the posterior is in general analytically intractable and very expensive to
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simulate from directly—if possible at all. In order to address this problem, a couple
of variations of the perfect MC sampler, that are also MC estimators, have been
proposed.

2.3.4 Importance sampling
The key to the development of particle-based Monte Carlo methods lies in the
extension of the basic Monte Carlo sampler to the concept of importance sampling.
The importance sampler is a slight modification to the perfect MC sampler defined
in (2.8). By introducing an instrumental density g, we can address the problem of
how to sample from the unknown target density p, but still keep the good properties
of the estimator.

Definition 3 (IS estimator). An IS estimator Ï̂

N
IS is defined as

Ï̂

N
IS

def= 1
N

Nÿ

i=1
w(›i)Ï(›i),

where

• w(x) = p(x)/g(x),

• supp Ï(x)p(x) µ supp g(x)

• {›

i
, i = 1, . . . , N} ≥ g

Using Definition 3 we can then formulate the following lemma

Lemma 1. The IS estimator is an MC estimator.

Proof. To show that Lemma 1 holds, we will apply a change of measure

Ep [Ï(X)] =
⁄

X
Ï(X)p(X) =

⁄

X
Ï(X)p(X)

g(X)g(X)dX

=
⁄

X
Ï(X)w(X)g(X)dX = Eg [w(X)Ï(X)]

We note that this change of measures is allowed by the definition of g. Since we have
already shown that the perfect MC sampler is an MC estimator, we are done.

2.3.5 Self-normalized importance sampling
In most practical applications, the instrumental density g will only be known up to a
normalizing constant c. Thus, we have g(x) = cg0(x), where g0(x) is a known density
function. In this case the standard IS sampler will not be su�cient for estimating
the expectation. We will mitigate this issue by introducing self-normalization to
the sampler.
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Definition 4 (SNIS estimator). A SNIS estimator Ï̂

N
SNIS is defined as

Ï̂

N
SNIS

def=
qN

i=1 w0(›i)Ï(›i)
qN

i=1 w0(›i)
,

where

• w0(x) = p(x)/g0(x),

• supp Ï(x)p(x) µ supp g(x)

• {›

i
, i = 1, . . . , N} ≥ g

This method is called self-normalized importance sampling and relies on the same
construction as the standard IS sampler. The only di�erence is the introduction of
a denominator. We will state the following lemma for capturing the usability of this
sampler

Lemma 2. The SNIS estimator is an MC estimator.

Proof. To prove Lemma 2, we will start by expanding the expression a bit to re-
introduce the old weight function w.

Ï̂

N
SNIS =

qN
i=1 w0(›i)Ï(›i)
qN

i=1 w0(›i)
=

1
N

qN
i=1

cp(›i)Ï(›i)
q(›i)

1
N

qN
i=1

cp(›i)
q(›i)

=
1
N

qN
i=1

p(›i)Ï(›i)
q(›i)

1
N

qN
i=1

p(›i)
q(›i)

Here, we obtained the last expression by identifying the constant c in both enumer-
ator and denominator, thus cancelling each other. To prove the lemma we will look
at the enumerator and denominator in the RHS separately. In the enumerator we
can see the definition of the standard IS sampler, which is an MC sampler by 1.
Looking at the denominator we see that since ›

i are drawn from g, by the strong
law of large numbers, we get that

1
N

Nÿ

i=1

p(›i)
q(›i)

a.s.≠≠æ
⁄

X
p(X)dX = 1, N æ Œ,

which completes the proof.

2.3.6 Sequential Monte Carlo
In this thesis we will focus on the SMC methods, which were first proposed in
1969 [10]. These methods are characterized by the possibility to infer the state
incrementally through recursive formulas, to incorporate new evidence as it arrives.
The recursion is key to make the on-line inference. In this section we consider SMC
methods for making inference on general HMMs as defined in Definition 1.
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The recursion is derived by splitting the state inference problem into two sep-
arate steps, which are called the measurement update and the prediction update,
respectively. The associated formulas are defined below.

p(x0:t | y0:t) = p(yt | xt)p(x0:t | y0:t≠1)
p(yt | y0:t≠1) (2.9)

p(x0:t+1 | y0:t) = q(xt+1 | xt)p(x0:t | y0:t) (2.10)

Equation (2.9) is called the measurement update recursion formula and as is
derived by applying Bayes’ theorem to the joint posterior distribution p(x0:t | y0:t),
but only for the most recent yt. This way we get that p(x0:t | y0:t≠1, yt) = p(yt |
x0:t, y0:t≠1)p(x0:t | y0:t≠1)/p(yt | y0:t≠1). Because of the Markov property of the
HMM we realize that the probability for yt only depends on xt and therefore the
conditioning on x0:t≠1 and y0:t≠1 can be dropped from the expression. Here, we
identify the first density in the enumerator, p(yt | xt) as the observation density of
an HMM. Further, we note that the function p(yt | y0:t≠1) in the denominator is
the one-step likelihood, which is constant given the observations.

The second equation, (2.10), is called the time update recursion formula. To
derive this expression we do the separation trick once again but this time for x,
i.e. considering x0:t and xt+1 separately. Expressing this in term of conditional
distributions we obtain p(x0:t, xt+1 | y0:t) = p(xt+1 | x0:t, y0:t)p(x0:t | y0:t). Since
y0:t does not add information in addition to that contained within x0:t, we can be
drop it from the conditioning. Doing so, we can identify the first distribution as the
transition kernel q in the HMM.

Alternating between inserting the time formula into the measurement formula
and vice versa, we can proceed forwards in time sequentially. For each iteration,
the only input we need is a new observation yt.

2.3.7 Particle filters and filter distributions
The recursive method described in the previous section can be adopted to a family
of algorithms called particle filters. Particle filters are algorithms that use a point-
mass approximation {›

i
t, w

i
t}N

i=1 for a probability distribution at time t. In essence,
›

i
t is an approximated sample from p(Xt) with its associated probability w

i
t. This

set of point-mass approximations is called a weighted particle system.
For hidden Markov models, the particle filter can be used to make inference

on the distribution of the latent variables. As new observations are made available
from the true distribution, the algorithm filters the weighted particle system through
the new observations. This is done by the recursion formulas defined in (2.9) and
(2.10). The marginal filter distribution at time t is denoted by „t and the weighted
N -particle system {›

i
t, w

i
t}N

i=1 approximating this distribution is denoted by „

N
t .

As t increases and new observations are made available, we obtain sequences of
weighted particle systems. In the context of ›

i
t being a particle, the sequence ›

i
t:tÕ

can be thought of as the particle trajectory for particle i from time t to t

Õ.
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2.3.8 Sequential importance resampling
Using a particle filter for updating the N -particle filter distribution „

N
t when moving

from time t to t + 1 is described in Algorithm 2. This is known as sequential
importance resampling (SIR). We will outline the derivation of the algorithm below.
For a more detailed discussion please see, for example, [9].

Algorithm 2: Sequential importance resampling
Data: yt+1, „

N
t

Result: „

N
t+1

for i = 1, . . . , N do

1. Draw ›

i
t+1 ≥ q(›t+1 | ›

i
0:t)

2. Compute w

i
t+1 = w

i
t
p(yt+1 | ›

i
t+1)q(›i

t+1 | ›

i
t)

g(›i
t+1 | ›

i
0:t, y0:t+1)

end

3. Normalize weights, s.t.
qN

i=1 w

i
t+1 = 1

4. Set „

N
t+1 = {›

i
t+1, w

i
t+1}N

i=1

The first step in the algorithm is pretty self-explanatory. It corresponds to a time
update recursion, where we only consider the most recent state. This means that to
obtain the particle-based equivalent of p(xt+1 | y0:t) we simply mutate our current
particles according to the dynamics—which is defined by the transition kernel q.

To derive the second step of the algorithm we first need to change measures to g

to define an expression for the weights. Similarly to the standard IS, but this time
defining the weights from Definition 3 in the presence of conditioning on y0:t, we
obtain the expression

wt(x0:t | y0:t) = p(x0:t | y0:t)
g(x0:t | y0:t)

We then proceed in a similar fashion as when deriving (2.9). This time we consider
g(x0:t | y0:t) = g(xt, x0:t≠1 | y0:t), to obtain the factorization

g(x0:t | y0:t) = g(xt | x0:t≠1, y0:t)g(x0:t≠1 | y0:t≠1).

Inserting (2.10) into (2.9) yields the following expression for the joint posterior
distribution

p(x0:t | y0:t) = p(yt | xt)q(xt+1 | xt)p(x0:t | y0:t)
p(yt | y0:t≠1)

Ã p(yt | xt)q(xt | xt≠1)p(x0:t≠1 | y0:t≠1),

which exhibits the same recursive dependency as our factorization of g. We have
dropped the one-step likelihood p(yt | y0:t≠1) from the expression, which is perfectly
fine as we are using a self-normalized IS scheme. This means that the distribution
is only known up to a normalizing constant.



20 CHAPTER 2. BACKGROUND AND PRELIMINARIES

Inserting the expressions for p and g into the definition of wt we obtain the
following weight update formula

wt(x0:t | y0:t) Ã p(yt | xt)q(xt | xt≠1)
g(xt | x0:t≠1, y0:t)

wt≠1(x0:t≠1 | y0:t≠1) (2.11)

Through step 3. of the SIR algorithm, the weights associated with the generated
sample are normalised. This step ensures equality in (2.11) and hence completes
the derivation of the algorithm.

2.3.9 The bootstrap filter

Algorithm 2 can be used together with an initial distribution ‰(x0) to sequentially
update the estimated joint posterior distribution p(x0:t | y0:t) as t increases.

A commonly used filtering scheme is the bootstrap filter. In this scheme, we
assume that the proposal density is the same as the transition prior. That is, g(xt |
x0:t≠1, y0:t) = p(xt | xt≠1). This is a standard trick to simplify the computations
and limit the number of assumptions needed. The primary drawback of using this
approach is the additional variance this introduces in the estimator, due to frequent
re-sampling being required (see below). An alternative approach would be to use the
so-called optimal proposal distribution, which means using the target distribution as
the proposal. However, sampling from that is often too computationally expensive
for being practical. Using the transition prior as the proposal leads to the weight
updating step being reduced to

w̃t(x0:t | y0:t) = p(yt | xt)wt≠1(x0:t≠1 | y0:t≠1),

where w̃t(x0:t | y0:t) denotes the unnormalized weights.
However, even with self-normalization, the weights will rapidly drop to zero,

making this unusable for anything but really small values of t. The reason for this
is the built-in di�usion in the algorithm. The particles move freely around the
state-space with no consideration taken to the usefulness of their current position.
In statistics’ terms, the variance of the estimator is growing unboundedly.

The bootstrap filter handles this problem by introducing a multinomial re-
sampling step at each timestep. This re-sampling is carried through by drawing
N particle trajectories from the density formed by the particle weights, i.e. accord-
ing to their associated weights. In this way, we will get rid of the particles with
low probability and only keep the relevant ones. As mentioned above, re-sampling
comes at the cost of adding variance to the estimator. Introducing re-sampling and
an initial draw of particles, we arrive at the following well-known algorithm
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Algorithm 3: Bootstrap filter
Data: y0:t
Result: „

N
k for k = 0, . . . , t

Draw {›

i
0}N

i=1 ≥ ‰

Set {w

i
0}N

i=1 = 1/N

Define „0 = {›

i
0, w

i
0}N

i=1
for k = 1, . . . , t do

Draw {›̃

i
0:k≠1}N

i=1 ≥ „0:k≠1|k≠1
Set {w

i
k≠1}N

i=1 = 1/N

Compute „

N
k by feeding {›̃

i
k≠1, w

i
k≠1}N

i=1 and yk into Algorithm 2.
end

The output from Algorithm 3 can be used to formulate the SMC estimator. This
estimator is defined by

Ï̂

N
t

def= 1
N

Nÿ

i=1
w

i
t›

i
t

where {›

i
t, w

i
t}N

i=1 is the weighted particle system. It can be shown that the SMC
estimator is an MC estimator of xt. A full theorem and proof for this can be found
in [5].

2.3.10 Predicting the future
To find an analytically tractable closed-form expression for the posterior is, in gen-
eral, not possible. However, in a true Monte Carlo spirit we can make use of our
filtered marginals and substitute the analytical evaluation with an empirical distri-
bution. Factoring p(yt+1 | y0:t), we obtain the following expression

p(yt+1 | y1:t) =
⁄

p(yt+1 | xt+1)q(xt+1 | xt)„t(dxt) (2.12)

To sample from p(yt+1 | y1:t), we will use our filtered marginal distribution „

N
t .

Because of this trick, generating a sample of predicted values y

pred
t+1 is simply a

matter of drawing from each distribution one at a time, similar to Gibbs sampling.
How to perform this sampling explicitly is defined in Algorithm 4. If the transition
density and observation density are multivariate, further factorization might be
required.

Because of the properties of the MC estimator discussed earlier, the resulting
sample {y

i,pred
t+1 }M

i=1 can be considered a set of I.I.D. draws from the predictive dis-
tribution p(yt+1 | y1:t).

2.3.11 Backward smoothing
In order to go back and solve the learning problem we will need a good approxima-
tion of the joint posterior distribution p(x0:t | y0:t). Unfortunately, we cannot use
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Algorithm 4: Sampling from one-step predictor
Data: Filtered marginal distribution „

N
t

Result: Sample of one-step predictions {y

i,pred
t+1 }M

i=1
for i = 1, . . . , M do

Draw ›̃

i
t ≥ „t

Draw ›

i,pred
t+1 ≥ q(›t+1 | ›̃

i
t)

Draw y

i,pred
t+1 ≥ p(yt+1 | ›

i,pred
t+1 )

end

the sequence of filtered distributions „

N
t from the bootstrap filter. Because of the

re-sampling step, all particles will share the same trajectory up until only the final
couple of time steps.

This phenomenon is called path degeneracy and causes large errors if the fil-
tered particle trajectories are used as an approximation of the whole joint poste-
rior distribution. To address this, we will need to perform something a so-called
backward pass. At time T , using all of these individual filter marginals, we will
attempt to recover the smoothed joint posterior distribute using a method called
backward sampling. This method has been treated extensively in, e.g. [7], where
convergence and other properties are also discussed. Starting with the last filtered

Algorithm 5: Backward sampling algorithm
Data: „

N
t for t = 0, . . . , T

Result: „

M
0:T |T

Draw {›̃

i
T }M

i=1 ≥ „

N
T

Define „

M
T |T as {›̃

i
T }M

i=1
for t = T ≠ 1, . . . , 0 do

for k = 1, . . . , M do

for j = 1, . . . , N do

Compute w

j
t|t+1 = q(›̃k

t+1 | ›

j
t )wj

t , where ›

j
t , w

j
t from „

N
t

end

Normalize weights, s.t.
qN

i=1 w

j
t|t+1 = 1

Choose ancestor ›̃

k
t = ›

j
t with probability w

j
t|t+1

end

Obtain „

M
t:T |T by adding {›̃

i
t}M

i=1 to „

M
t+1:T |T

end

marginal distribution „

N
T , suitable ancestors {›̃

i
T ≠1}M

i=1 are selected from the pre-
vious filtered marginal distribution „

N
T ≠1. This is then repeated recursively for

remaining times t = T ≠ 1, . . . , 0 to obtain the joint smoothed posterior density
„

M
0:T |T = {›̃

i
0:T , w

i
T }M

i=1. We have provided the full algorithm in Algorithm 5.
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2.3.12 Sequential Monte Carlo expectation-maximization

Once we have found a way to compute the joint smoothing posterior density „0:T |T ,
we can start looking for a way to compute the optimal values for the hyperparam-
eters ◊. Going back to the EM algorithm, we will need make a few adaptations to
get it to work under a particle-based regime.

In this thesis we will use the Sequential Monte Carlo Expectation-Maximization
(SMCEM) algorithm discussed in [17]. This paper provides insight to the valid-
ity of the algorithm under the SMC paradigm, along with interesting convergence
results. In short, the algorithm operates on a batch of observations y0:T . It re-

Algorithm 6: SMC Expectation-Maximization
Data: y0:T
Result: ◊

ú

Set initial guess ◊

Õ = ◊0
while Stopping criterion not met do

for t = 1, . . . , T do

Compute and store „

N
t (◊Õ) using Algorithm 3

end

Compute „

M
0:T |T (◊Õ) by inserting all „

N
t (◊Õ) into Algorithm 5

Compute su�cient statistics ST (◊Õ) from „

M
0:T |T (◊Õ)

Set QN (◊, ◊

Õ) = ÷(◊) · ST (◊Õ) ≠ A(◊)
Update ◊

Õ = arg max◊œ� Q(◊, ◊

Õ)
end

Set ◊

ú = ◊

Õ

sembles the standard EM algorithm (see Algorithm 1) in that first the auxiliary
quantity Q(◊, ◊

Õ) is computed and then the hyperparameter ◊

Õ is updated by find-
ing arg max◊œ� Q(◊, ◊

Õ). These two steps are then repeated until optimality has
been reached. The primary di�erence is that we do not have access to the true joint
posterior distribution p(x0:t | y0:t), but instead have to rely on the smoothed joint
posterior distribution „

M
0:T |T for computing Q(◊, ◊

Õ). This can lead to a considerably
increased level of complexity. However, as long as the complete data likelihood func-
tion p◊(x0:t, y0:t) belongs to the exponential family, the procedure becomes straight-
forward. We can simply compute the su�cient statistics ST (◊Õ) from „

M
0:T |T (which

is computed under ◊

Õ), to approximate Q(◊, ◊

Õ) by an M -particle approximation
defined as

QM (◊, ◊

Õ) = ÷(◊) · ST (◊Õ) ≠ A(◊), (2.13)

where ÷ and A are the natural parameter and log-partition functions, respectively.
When the distribution is known, finding the optimal ◊

Õ is easy. The full SMCEM
algorithm is defined in Algorithm 6.
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We note that, as discussed in the paper referenced above, for the SMCEM
algorithm to converge, it is required to increase the number of particles with each
iteration. This is typically done at a quadratic increase rate. Further, to obtain
good convergence results, several hundreds of iterations might be required.



Chapter 3

Model

In this chapter we define the scaled volume imbalance �, which is an adaptation of
the volume imbalance discussed in Section 2.1.2. We find that � is an observable
outcome of an underlying process. This process is carefully studied and modelled,
resulting in an elegant hidden Markov model (see Definition 1).

3.1 The scaled volume imbalance
The volume imbalance, as discussed in Section 2.1.2, has many interesting proper-
ties. With the successful concave modelling of volume in relation to price impact,
as discussed in Section 2.1.4, along with the positive e�ects this has on observed
distributions, as we will discuss later in Section 3.2.3, we propose an adaptation of
this quantity, which we will call the scaled volume imbalance �. Moving forward,
this is the quantity that we will study using the Monte Carlo framework that we
develop in this thesis.

To formulate the definition of � we will first define the scaled volumes ‹ via the
concave transform

‹ = Ô
q (3.1)

of the volumes q associated with individual trades.
Without making any further assumptions at this stage, we say that � is observed

at time t by the observable outcome Ât, defined by

Ât
def= Q

B
t ≠ Q

S
t =

nB
tÿ

i=1
‹

B
t,i ≠

nS
tÿ

i=1
‹

S
t,i (3.2)

Here, t denotes the discrete timestep and index i denotes each (pooled) trade in
the observed set of trades for that timestep, with n

B
t buyer-initiated and n

S
t seller-

initiated trades, respectively. The values ‹i, are the scaled volumes, as defined in
(3.1), associated with each trade.
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The primary distinction between the scaled volume imbalance and the standard
volume imbalance is the concave scaling of traded volumes.
Remark 1. The scaled volume imbalance only considers executed trades. This keeps
down the complexity while at the same time a high signal-to-noise ratio is obtained.
We will discuss this topic more in-depth in Section 6.6
Remark 2. There are, of course, many proposals for models that make use of all
actions (see, for example, [11]). This generally leads to a very complex model with
a multitude of unknown parameter, which is something that we want to stay away
from here. Therefore, we have another reason to limit ourselves to looking at trades
only.

3.2 Making assumptions
In this section we will discuss what assumptions can be made on the underlying gen-
eration process of executed trades and their attributes of interest. All assumptions
are motivated in detail. Where possible, we provide empirical evidence to support
our choices.

3.2.1 Trade generation is memoryless
If we consider the limit order flow, i.e. regular placing of orders, this is sometimes
assumed to be memoryless in order to get analytically tractable solutions. However,
thinking about it, it is easy to imagine that market participants act on limit orders
that are hitting the order book and as a result place their own limit orders. There
is actually a technique called spoofing, by which traders use deceptive orders to bait
other traders into trading. This kind of scheme is illegal, but through its existence,
the technique invalidates the memorylessness assumption for limit orders.

On the other hand, when it comes to trades, these actions do not introduce any
new information, as discussed in [3]. Therefore, there is no reason for a market
participant to act on an executed trade. In reality, for someone who wants to buy
(who believes the price to be fair or too low) an incoming buy-initiated trade can
only cause the trader not to buy—by, for example, taking all the liquidity on the
best ask level. ”Not not buy” is not an action and, hence, does not invalidate the
memorylessness assumption.

Before concluding that the memorylessness property can be used to describe
trade generation, there is, however, something else we will first need to consider.
Most electronic trading platforms support splitting of a market order to match
against multiple limit orders, if the full volume cannot be executed against the
single limit order with highest priority. This will cause a single trade order to result
in multiple simultaneous trade executions. Hence, observing each execution as if it
were a unique trade would violate the memorylessness assumption.

Further, the high level of automation associated with high-frequency markets
means that many traders are using computer algorithms, which are (typically) based
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Figure 3.1. Inter-arrival times of sell trades during 8 minutes of trading, without
pooling (left) and with pooling (right). Vertical axis displays values in milliseconds.

on a set of deterministic rules. It happens that di�erent traders use very similar,
if not identical, algorithms. This is mathematically equivalent to having one single
trader—one belief system—performing several correlated trades virtually at the
same time.

To address both of these problems, we propose the introduction of something
we call trade pooling. This is a procedure in which trades that are temporally very
close are pooled together, to count only as a single trade. The volume of a pooled
trade is defined by the sum of the volumes of all trades that together make up the
pooled trade—just as if the trade was only one larger trade rather than several
smaller ones. Using this concept we make the following assumption

Assumption 1. The generation process of pooled trades for a particular side (Buy
or Sell) is memoryless.

To motivate this, we need to realize that the issues pointed out above both
result in simultaneous trades. In the first problem we will see trades with the exact
same timestamp, whereas in the second problem there might of course also be some
associated latencies. Therefore, trade pooling should definitely, at least, reduce
these phenomena.

Further, studying this empirically we can see evidence that trade pooling really
addresses this problem. After the trade pooling, the inter-arrival times actually
display a strong exponential character, where before the pooling they did not. In
Figure 3.1 we can see a comparison between exponential Q-Q plots for inter-arrival
times between sell trades for 8 minutes of trading in the super-liquid front-month
index futures contract FDAX Jun14 on April 28, 2014, with and without trade
pooling. From this, for the rest of the thesis we will always refer by ”trade” to
pooled trades.
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3.2.2 Trade generation is time-dependent
We will proceed by making the following assumption

Assumption 2. The generation process of pooled trades for a particular side (Buy
or Sell) is time-dependent.

This assumption can easily be motivated by intra-day seasonality e�ects that are
readily observable, such as diurnality or that everybody takes a lunch break at the
same time, causing a sudden decrease in trading activity. The trading intensities
are also highly sensitive to news releases and other information generators.

3.2.3 Scaled volumes are exponentially distributed
The distribution associated with volumes of individual trades has been studied a
lot and is generally assumed to follow a power-law (see, for example, [13]). Drawing
from this knowledge, the transformation defined in (3.1), which is the inverse to the
described power-law, takes away the problematic fat tails of the distribution and
hence reveals more of the inner features. We formulate the first of those features
by the following assumption.

Assumption 3. The scaled volumes ‹ for pooled trades on a particular side (Buy
or Sell) are exponentially distributed.

We will try to motivate this assumption by providing some empirical evidence.
In Figure 3.2 we have applied the transform to the volumes of pooled trades executed
during 30 minutes of trading in the super-liquid front-month futures contract FDAX
Jun14 on April 28, 2014. As we can see the scaled volumes exhibit a pronounced
exponential behaviour.

It should be noted that it might seem a bit counter-intuitive to use a continuous
distribution such as the exponential distribution to describe something as clearly
discrete as the the scaled volumes, instead of using a discrete distribution. However,
due to the non-linearities in the outcomes it would be very problematic to find a
suitable discrete distribution that characterizes this behaviour. Also, as we will see
later, in this thesis we will only consider sums of scaled volumes, which approach
the continuous case.

3.2.4 The scaled volume distribution is time-dependent
Similar to the distribution of trade generation, we formulate the following assump-
tion

Assumption 4. The distribution of scaled volumes ‹ for pooled trades on a partic-
ular side (Buy or Sell) is time-dependent.

This assumption is primarily introduced for symmetry. It can be motivated,
for example, by the possibility of an institutional trader entering the market at a
certain point of the day, raising the average volume sizes.
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Figure 3.2. Exponential Q-Q plot for scaled volumes of pooled sell trades in FDAX
Jun14 during 30 minutes of trading on April 28, 2014

Further, when repeating the study in the previous section for other times of the
day, the parameter of the exponential distribution varies when fitted to data for the
di�erent times, which is an empirical indicator to motivate this assumption.

3.3 Defining the model
Now that all the assumptions and the theoretical parts are laid out, we are ready
to define the model to use for making inference about �. Trying to capture the
intra-day seasonality, as well as allowing for news events and similar, we will de-
scribe � in terms of an HMM, as defined in Definition 1. We will see that such a
state-space model appropriately reflects the nature of the financial markets. The
observations will be things like number of trades and the traded volumes, while
the latent variables, the state, will be associated with hidden processes driving the
dynamics of the markets.

3.3.1 The observations

To obtain the observation density we must start by defining the set of observations
that we will be using. We could limit ourselves to only consider the observed values
Ât directly. However, doing so would cause a lot of the available information to
be lost. Diving into the components that make up �, we realize that we have
access to the outcomes of the scaled aggregations Q

B and Q

S , too. Examining the
Q processes themselves closer, we have the following definition of their observable
outcomes
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Q

(ú)
t =

n(ú)
tÿ

i=1
‹

(ú)
t,i ,

where (ú) denotes the side (Buy or Sell) and t denotes a particular time step.
Combining Assumption 1 with Assumption 2, we realize that the value n

(ú)
t

can be modelled as an outcome of an inhomogeneous Poisson process, as defined
in Section 2.2.3. Hence, n

(ú)
t is a Poisson distributed outcome for some Poisson

parameter ⁄

(ú)
t on the time interval [t, t + �t).

Further, by Assumption 3 and Assumption 4, the scaled volumes ‹i can each be
modelled as an outcome of an exponential distribution with some time-dependent
scale parameter µt.

Since it is possible to observe both n

(ú)
t and the associated scaled volumes

{‹

t,1 , . . . , ‹

t,n(ú)
t

}, we will try to formulate a model that makes use of all the available
information—not only Ât. To accomplish this, we define the observation yt as

yt = {n

B
t , n

S
t , Q

B
t , Q

S
t } (3.3)

The reason that we choose to not observe each individual scaled volume, is that due
to the memorylessness property of the exponential distribution, no information is
provided by the individual outcomes in addition the that of their total sum.

The sum of a known number exponentially distributed random variables having
the same parameter, is called the Erlang distribution, which simply is a Gamma
distribution with an integer-valued shape parameter. This leads to the following
relations

n

B
t ≥ Po(⁄B

t )
n

S
t ≥ Po(⁄S

t )
Q

B
t | n

B
t ≥ Erlang(nB

t , µ

B
t )

Q

S
t | n

S
t ≥ Erlang(nS

t , µ

S
t )

(3.4)

These relations together make up the observation density p◊(yt | xt). Since the
outcomes are independent (apart from the conditioning on n

(ú)
t in Q

(ú)
t ) the full

observation density can be written as

p◊(yt | xt) = f(QB
t | n

B
t , µ

B
t )f(nB

t | ⁄

B
t )f(QS

t | n

S
t , µ

S
t )f(nS

t | ⁄

S
t ) (3.5)

where f represents the probability density functions associated with each of the
distributions in (3.4).

As we can see there is no dependency on any external hyperparameters ◊, which
means that we have p◊(yt | xt) = p(yt | xt), and hence we drop ◊ from the notation.
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3.3.2 The latent variables
From the definition of the observations yt (see Equation 3.3) the set of latent vari-
ables xt to use in this HMM comes out naturally as

xt = {⁄

B
t , ⁄

S
t , µ

B
t , µ

S
t } (3.6)

The trading intensities ⁄

(ú)
t , for buyer-initiated and seller-initiated trades, are time-

dependent as per Assumption 2. They are even expected to fluctuate quite a lot
throughout the day, as noted in the discussion in connection to that assumption. To
cope with these fluctuations, we will model the transitions by a Laplace distribution.
The Laplace distribution has some nice features; it is leptokurtic (to allow for sudden
jumps), belongs to the exponential family and only requires a single parameter b

when assumed to be centered around zero. As we have no reason to assume drift
in either direction for the trading intensities, this distribution fits our purpose very
well.

By Assumption 4 we also assume that the scale parameters associated the volume
distributions µ

(ú)
t are time-dependent. However, in this case, we do not expect them

to change very much. We will therefore model these changes by a good old Normal
distribution. Following the same reasoning as for the intensities ⁄

(ú)
t , we assume no

drift and hence only have one parameter to fit, the standard deviation ‡. This can
be summarized by

⁄

B
t+1 ≥ Laplace(⁄B

t , b

B)
⁄

S
t+1 ≥ Laplace(⁄S

t , b

S)
µ

B
t+1 ≥ N (µB

t , ‡

B)
µ

S
t+1 ≥ N (µS

t , ‡

S)

(3.7)

Further, in this thesis, we have assumed that the transitions are all independent
between the latent variables, i.e. ⁄

B
t+1 ≠ ⁄

B
t ‹ ⁄

S
t+1 ≠ ⁄

S
t ‹ µ

B
t+1 ≠ µ

B
t ‹ µ

S
t+1 ≠ µ

S
t .

In contrast to our observation density, the transition density depends on a set of
hyperparameters ◊ = {b

B
, b

S
, ‡

B
, ‡

S}. Since the transition kernels are symmetric,
◊ is purely describing the rate of the evolutionary di�usion.

3.3.3 The initial distribution
We will not discuss the functional form of the initial distribution ‰(x0) as it is very
di�cult to formulate any useful assumptions on distribution characteristics from
a market microstructure point-of-view. Fortunately, the initial distribution is not
very interesting as the result will (asymptotically) not depend on it.

In such cases, it is generally advised to look for more general initial distribu-
tions that come with good properties for making statistical inference. However, we
have found that for the purpose of this thesis it is su�cient to simply instantiate
all particles to some constants, x0 = {a, b, c, d}, and then mutate them one time
according to q◊.





Chapter 4

Method

In this section we will discuss how the hidden Markov model defined in Chapter 3
can be studied using a particle filter based approach as described in Section 2.3 of
Chapter 2.

4.1 Framework

In this section we will propose a Monte Carlo framework for solving the learning
problem and inference problem related to an HMM describing market microstructure
phenomena in a high-frequency setting. The quantity of interest in our study is the
scaled volume imbalance � as defined in Chapter 3.

4.1.1 On-line inference

A bootstrap filter (Algorithm 3) is implemented to track the latent variables xt =
{⁄

B
t , ⁄

S
t , µ

B
t , µ

S
t }, using the observations yt = {n

B
t , n

S
t , Q

B
t , Q

S
t }. With the objec-

tive in this thesis focusing on making (one-step) predictions and performing model
learning through the SMCEM algorithm, we will only need to consider the sequence
of filtered marginal distributions „

N
t for t = 0, . . . , T . The observations are sampled

on consecutive sampling periods of length �t, in which executed trades are pooled
if they are executed within a very small time-span · of each other, as discussed in
Section 3.2.1.

The transition kernel q◊(xt | xt≠1) used for the particles is taken to be the one
with Laplacian (for ⁄

(ú)
t ) and Gaussian (for µ

(ú)
t ) densities, as discussed in Section

3.3.2.
The likelihood function used to update the weights for each observation is defined

by the observation density in (3.5).
The proposal distribution in the SIR algorithm (Algorithm 2) is taken to be

the same as the transition density, i.e. g(xi
t | x

i
t≠1, yt) = q(xi

t | x

i
t≠1), as per the

definition of the bootstrap filter.
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4.1.2 Model learning

Learning is done by an implementation of the powerful SMCEM algorithm (Algo-
rithm 6). We consider each trading day a separate batch of observations. This is a
natural way for splitting the data because we do not have to consider the potential
jumps that can happen between closing and opening. Hence, we always run the
SMCEM end-of-day using all the observations for that day. For each iteration we
begin with a forward pass using the bootstrap filter to compute all marginals „

N
t for

t = 0, . . . , T , then we proceed with a backward pass using the backward sampling
algorithm (Algorithm 5) to simulate the joint smoothed posterior density „

M
0:T |T

from the marginals. The joint smoothed posterior is then used for completing the
current SCMEM iteration.

In our case the only dependency on ◊ lies in the transition kernel q◊. Since the
dynamics of the latent variables are independent and we only assume di�usion, max-
imizing the auxiliary function Q only comes down to computing the complete data
maximum likelihood estimators for each individual parameter in ◊. In other words,
we find the {b

B
, b

S
, ‡

B
, ‡

S} which best describes the smoothed particle trajectories
in „

M
0:T |T , from a likelihood perspective.
After updating ◊

Õ, we proceed with the next iteration until the MLE of ◊ is
found—or at least a good estimate ◊̂ of it. For the first 10 iteration we use N = 1000
and M = 100. After that, we increase the number of particles for each iteration
quadratically. In this thesis we have not studied optimal stopping conditions. In-
stead we simply consider ◊ optimal after 20 full iterations. At this point we have
N = 2000 and M = 200. We note that the appropriateness of this stopping criterion
is supported by Figure 5.1.

Based on the scheme defined above, we will use the hyperparameter estimated
from the observations on day k ≠ 1 (yesterday) for making on-line predictions on
day k (today). We denote the approximation of today’s optimal hyperparameter
◊

ú
k. Thus, with this notation, we have that ◊

ú
k = ◊̂k≠1.

4.1.3 Model assessment

The quantity of interest in this thesis is the scaled volume imbalance �. The set
of observables yt = {n

B
t , n

S
t , Q

B
t , Q

S
t } is merely a construction emerging from the

proposed model for tracking �. Therefore, for all model assessment we will restrict
the performance analysis to checks that are addressing Ât directly. This is the same
as setting the function T in (2.6) to be Ât from (3.2), i.e. T : yt ‘æ Ât, or

T (yt) = Q

B
t ≠ Q

S
t . (4.1)

With a clear view on what we want to study, we begin the model assessment with the
second item in Section 2.2.9. For this we will look at the posterior distribution for
some timesteps to see that it behaves sensibly and is not degenerated or otherwise
pathological. After this sanity check, we will move on to examining the prior as
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per the first item. This will be done by looking at the performance of the inference
when using non-optimal values of ◊.

For the third item, fitness to data, prediction is carried out via Algorithm 4. In
short, we draw a sample of predicted observations y

pred
t+1 from the predictive distri-

bution „̂

N
t+1|t. This predictor is obtained by simply mutating the filtered marginal

„

N
t one time. We will repeat this across the day, obtaining a sequence of predictive

distributions „̂

N
t+1|t for t = 0, . . . , T .

Using the predicted observations we will analyse the probability that the pre-
dicted scaled volume imbalance �pred

t take a value less than or equal to the observed
outcome Ât. By using the expression for T above, this is the same as computing the
posterior p-values, as defined in Equation 2.6, for each time step t. This gives us
the sample {P(�pred

t Æ Ât | y0:t≠1)}T
t=1 that we denote by {ut}T

t=1. Here, we realize
that by assuming that the predictive distribution actually is the real distribution of
�t+1, we can consider {ut}T

t=1 to be the cumulative probabilities for the observed
outcomes Ât+1.

It should be noted, though, that this assumption is only valid if the transitions
in x between two time-steps are relatively small, since the dynamics directly a�ects
the posterior predictor by adding variance. Seeing that this is sensible, we use this
assumption to check the performance of our predictions. If the assumption holds,
the computed p-values for each timestep should together be I.I.D. draws from a
uniform distribution, by the Probability Integral Transform.

The primary check for uniformity in the p-values will be a Uniform Q-Q plot
of {ut}T

t=1 for each day. Another property that we will need to check is that there
are no clustering e�ects in the predictions, i.e. that we do not see longer sequences
of what is considered ”improbable outcomes”. For this, we will also look at the
distribution of the di�erences �ut = ut ≠ ut≠1 against the theoretical distribution
of a di�erence of two Uniform random variables. That distribution has the density
function p(�ut) = (1 ≠ |�ut|)/2.

We will also show how to perform a formal hypothesis testing of the predictor.
Looking at the 1 ≠ p confidence interval of the predictor we define the following
exceedance indicator

It =
I

0, if �pred;p/2
t Æ Ât Æ �pred;1≠p/2

t

1, otherwise
(4.2)

where �pred;q
t indicates the quantile function of the posterior predicted distribution

and p is typically set to 5%. For a batch of T observations, the sum
q

It should
then follow the Binomial distribution for T trials with probability p. From this
relation, we can conduct two types of tests. To test that the predictor neither
underestimates, nor overestimates the dynamics, we will use a two-sided test.

Using a single-sided test, this device can be used for anomaly detection of trading
days with unpredictably high dynamics.
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4.2 Implementation
In this section we will provide some tips and tricks and discuss some of the specific
choices we have made for the implementation of the algorithms used in this thesis.

4.2.1 Implementation Details
All algorithms have been implemented in Java 8. To use as pseudo-random number
generator (PRNG) the WELL19937c implementation from Apache Commons Math
3 was chosen. This PRNG is well suited for Monte Carlo methods because it has
an extremely long period, compared to e.g. the standard JDK generator. Without
regard to the choice of programming language, it is always advised to make sure an
adequate PRNG is being used.

Draws from distributions having a closed-form inverse are performed using the
Inverse Transformation Theorem. For other distributions, such as the Poisson dis-
tribution and the Gamma distribution, Apache Commons Math 3 is used.

The bootstrap filter is run single-threaded since it is, in essence, sequential;
the normalization step requires all particles to be known. It would be possible to
make some parts of it multi-threaded, but that was not deemed necessary. How-
ever, running backward sampling single-threaded was a bit slow. There are other
backwards smoothing schemes, aiming to reduce the complexity, but since imple-
menting multi-threading for this algorithm was straightforward, we decided that
this was su�cient. To make it multi-threaded with n threads, at each timestep the
children are split into n equal sized batches, handled each by their own thread. This
made the computation speeds fall into good time-scales.

4.2.2 Specifics
When implementing a framework of this scale there are a lot of small choices that
must be made.

For the the SMCEM algorithm we decided that it was su�cient to formulate
our stopping criterion as ”perform 20 iterations in total”. The algorithm converges
very rapidly, as can be seen in the Figure 5.1, so these 20 iterations will su�ce. The
error from using the previous day’s estimated hyperparameters instead of today’s
values will be much more significant. Further, as an initial guess for the ◊, we have
used ◊

Õ = {5.1, 7.4, 0.46, 0.33} across all days and instruments successfully.
We have not aimed to capture the dynamics of o�-hour trading. In some mar-

kets, trades can be reported after trading has closed. These trades are usually OTC
trades, or in some other way not directly related to the electronic trading. There-
fore, we have restricted ourselves to only consider trades within the regular trading
day. We have also decided to not consider auction trades.

When running the SMCEM algorithm for learning the hyperparameters, for the
first 10 iterations 1000 forward particles and 100 backward particles were used.
After that, the number of particles were increased quadratically, in the way that



4.2. IMPLEMENTATION 37

at iteration 200 there were 2000 forward particles and 200 backward particles. For
prediction, 1000 forward particles were used across all data runs.

4.2.3 Performance
All computations have been run on a PC with an Intel Core i5-6600K processor,
16GB RAM and Windows 10 64-bit operating system.

The algorithms used in this thesis are all linear in T. For �t = 1 min, i.e. about
540 timesteps in a regular trading day, a forward pass with the bootstrap filter takes
about 15 seconds and the backward pass with the backward sampling algorithm
about 8 seconds. This means that a full iteration of the SMCEM algorithm takes
about 23 seconds to complete, since the computational time needed for the M-step
is negligible.

Consequentially, running for half the sampling interval (�t = 30 s) takes twice
the time; around 45 seconds. Similarly, setting �t = 10 min results in iterations
taking only 2–3 seconds to complete. Altogether, this makes the algorithm very
potent and allows for a fair bit of extra complexity to be added in the future.





Chapter 5

Results

In this thesis we are studying data that Deutsche Börse AG have let us use for the
purpose of this thesis. Deutsche Börse was early to embrace the digital era and is
therefore now one of the leading actors in the world when it comes to electronic
trading. Their main platforms are all electronic, using cutting-edge technology for
managing their data, resulting in the finest quality data.

We have sampled the observations using the Calculation Server module for the
software Scila Surveillance that Deutsche Börse uses for monitoring all trading
activity in their platforms. We have focused on equities and futures instruments as
they are the best understood contracts from a LOB perspective, making the results
easy to generalize.

The specific instruments that will be studied are stocks for Adidas AG and
Nordex AG, which are traded on the platform Xetra, together with the super-liquid
front-month futures contract FGBM Mar16 (’Euro-Bobl Futures’), which is traded
on the platform Eurex. The instruments are studied for days in the period from
Feb 1–12, 2016.

5.1 Learning the hyperparameter
To show that the framework we have developed is capable of making inference, we
must start by making sure that we are making adequate learning of the hyperpa-
rameter ◊.

5.1.1 Convergence of the SMCEM algorithm

We start by verifying that the SMCEM algorithm produces consistent results. In
Figure 5.1 we see the output of the SMCEM algorithm for trading on Feb 2 in
Adidas AG and FGBM Mar16, respectively. For Adidas AG, the initial guess for
◊ was drawn uniformly between 1 and 8 for b

(ú) and between 0.05 and 1.2 for ‡

(ú).
For FGBM Mar16, the initial guess was drawn uniformly between 1 and 12 for b

(ú)

and between 0.05 and 1.2 for ‡

(ú). The algorithm was run 40 times, producing the

39



40 CHAPTER 5. RESULTS

Figure 5.1. Estimates of optimal ◊ per iteration in the SCMEM algorithm when
applied to trading on Feb 2, 2016, in stock Adidas AG (left) and futures contract
FGBM Mar16 (right). The algorithm was run 40 times, each with 20 iterations.

40 trajectories presented in the figure. It is clear that the results are consistent.
Further, we observe that the estimates approach the ”end result” quicker from above
than from below. This is expected, since it is easier to find a quiescent path among
noisy trajectories, than to produce a noisy path from limited dynamics.

This figure shows that it takes about 10 iterations to get a decent estimate, even
if the initial guess is quite a bit o�. After 20 iteration, the estimate has stabilized
further. For reference, in the FGBM Mar16 case the standard deviation for each
component in ◊ is at this point only around 1% of its mean. For the purpose of this
thesis this is considered su�cient. This motivates our choice of stopping criterion
(see Section 4.2.2).

5.1.2 Hyperparameter dependency on �t

Even though the quest for finding a perfect value of �t goes beyond the scope of
this thesis, we will need to verify that we do not encounter any problems because
of a bad choice of sample interval length.

In Figure 5.2 we can see that the optimal values of the hyperparameters b

S

increase with �t. This behaviour has been found to apply in general for the b

hyperparameters across the data. A possible interpretation is that the underlying
processes scale accordingly for small �t, but as �t grows larger we see some kind
of averaging a�ect. In other words, on a bigger time scale the underlying dynamics
appear more stable.

Conversely, the optimal ‡

S initially decreases with respect to �t, to later become
almost constant, as can be seen in Figure 5.3. The initial decrease can be be thought
of as stabilization in regards to the observations. On the very small scale the average
traded volume can change rather dramatically from one observation to the next since
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Figure 5.2. Standard plot (right) and log-log plot (left) for optimal value of b

S on
Feb 4, 2016, for FGBM Mar16, against the length of the sampling interval �t. The
optimal b

S increases linearly at first, to then grow more slowly.

Figure 5.3. Standard plot (right) and log-log plot (left) for optimal value of ‡

S on
Feb 4, 2016, for FGBM Mar16, against the length of the sampling interval �t. The
optimal ‡

S decreases at first, to then end up somewhere between 0.7 and 0.8.

each observation will only contain a few trades. This could lead to a little higher
movement in µ than desired. As the sample length increases we therefore see a
lower value for ‡, leading to much smaller movement in µt.

In this thesis we have studied the results for both a smaller sampling interval of
about 1 minute, and a longer sampling interval of about 10 minutes time. Looking
the figures above, we believe that these choices for �t should properly reflect the
bigger picture.
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Figure 5.4. The optimal value of ◊ across multiple days for FGBM Mar16 using
sampling time �t ¥ 90 s. Laplace parameters b are rather volatile while Normal
parameters ‡ are fairly stable on a day-to-day basis.

5.1.3 Optimal values across multiple days
In Figure 5.4 the optimal values for the di�erent components of ◊ are plotted over
the period from Feb 1–12, 2016, for the front-month futures contract FBGM Mar16.

The observations were unfortunately sampled in such a way that �t varies be-
tween 88 seconds and 93 seconds over the 2 week period. However, this does not
a�ect the estimates significantly. Further, this result is primarily provided as a step-
ping stone for future discussions around how to improve the choice of ◊

ú
k discussed

in Section 4.1.2.
In this figure we can see that the hyperparameters ‡ determining the rate of

di�usion in µt are very stable. The change between days is less than 10%. On the
other hand, the hyperparameters b determining the rate of di�usion in ⁄t change
the more. They seem to oscillate around some mean value but the process is quite
volatile; the value is almost halved or doubled from one day to the next.

5.2 Parameter inference
The nature of the two types of latent variables, ⁄ and µ, are radically di�erent,
which is clearly reflected in the results. In Figure 5.5 we are displaying typical
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Figure 5.5. Smoothed particle trajectories of inferred ⁄

B
t (left) and µ

B
t (right) for 40

minutes of trading in FGBM Mar16. The black line represents the expected values.
Observations were sampled at an interval �t = 90 s. The ⁄

B
t values have small

variance at each timestep, but are volatile with respect to t. The µ

B
t values have a

lot higher variance for each timestep, but the mean is relatively stable, except for a
quick drop during one step.

trajectories observed in the results. The trajectories in the plots are the smoothed
trajectories for the buy parameters ⁄

B
t and µ

B
t during about 40 minutes of trading

in the futures contract FGBM Mar16 for the second half of Feb 8, 2016. These
results were obtained using a sampling time of �t = 90 s.

As we can see in the left plot the smoothed marginals have quite low variance,
while the expected values change from step to step. This is in line with our expec-
tations, since the markets are known to fluctuate and can move fast at times (which
we aim to capture with this model).

In the right plot we can observe the opposite characteristics being exhibited
by the inferred µ

b
t . The particle trajectories are all over the place but the mean

remains fairly stable, except for certain deviations on individual timesteps. It is
likely that this variance is introduced as a side-e�ect of the rapid changes in ⁄t

when the smoothing is applied. Perhaps the significance of the time-dependency in
µt in this model can be toned down, e.g. by penalizing µt dynamics or removing
it completely, in order to improve the overall performance. As discussed in Section
3.3.2, the time-dependency was introduced to allow for intra-day changes in µ, not
that it is necessarily expected.

5.3 Posterior predictive checks
The most important test is to verify that the N -particle predictive distribution
„̂

N
t+1|t accurately describes the observed outcomes of �t+1. To show this we will

look at the probability that the predicted outcome is lower than, or equal to the
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observed outcome, ut = P(�pred
t Æ Ât | y1:t≠1), for each timestep t on a specific

trading day. We are doing this for trading in three di�erent financial instruments
on Feb 3, 2016, each at two di�erent sampling lengths �t, the first being around 1
minute and the second around 10 minutes.

5.3.1 The predictive distribution

Even though we do not have a closed-form analytical expression for the posterior of
�, and even less for the posterior predictive distribution, by using the Monte Carlo
machinery we can assess these distributions through their empirical distributions.

In Figure 5.6 we show the estimated predictive distribution step-by-step for a
few predictions made in the futures contract FGBM Mar16 on Feb 8. For the
purpose of this figure we have used the same-day MLE of ◊ to get a clear view of
the behaviour of the predictor. Using any other approximation would a�ect the
variance, since the dynamics are defined as pure di�usion.

We see that the predictor is looking quite symmetric and well-behaving; almost
like a Normal distribution most of the time. A closer inspection of t = 90 and t = 91
further reveals the resemblance. For these particular time-steps, we have provided
Normal Q-Q plots in Figure 5.7. This could be a side-e�ect of the mutation step
when creating the predictive distribution.

Going through the histograms in Figure 5.6 one at a time we observe the fol-
lowing: In the first three timesteps the realized values are getting lower and lower.
Before t = 88 there was a regime with high realized values of �t. At t = 91 the
series of realizations have stabilized at a new normal level around 0, and so has the
predictor, too, as can be seen in timesteps t = 92 and t = 93. Throughout the whole
sequence of a falling � the predictor maintained good precision on the predictions.

5.3.2 Uniformity in cumulative probabilities

Now we will focus on the performance of our ”true” on-line predictor, i.e. using
the on-line prediction algorithm with ◊

ú
k = ◊̂k≠1. This approximation will be used

throughout the rest of the data analysis. Looking at Figure 5.8 we see that ut are
convincingly uniform in the distribution across all timesteps for each of the three
stocks. There are tendencies showing that the predictions gets a bit more unreliable
as �t increases. This is perfectly intuitive as it simply means that predictions the
longer into the future are a little harder to make.

For the FGBM Mar16 contract the predictor seem to have a bit higher variance
than the actual distribution, resulting in higher number of observations than ex-
pected being closer to the center (u = 0.5) of the predictive CDF. The additional
variance is introduced by the di�usion in the prediction step, and the excess in this
case could be interpreted as that the FGBM Mar16 contract is more volatile in its
dynamics on the 1 minute time-scale. Going back to the reasoning about depen-
dency on �t we realize that 1 minute is actually a longer horizon from an event
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Figure 5.6. Histograms of predicted �t+1 along with the actual observations Ât+1
(indicated by the red lines) for 6 observations in FGBM Mar16 on Feb 8, 2017.
The realized values are of high probability even in the event of rapid changes in the
underlying regime.
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Figure 5.7. Normal Q-Q plots against the empirical distribution of the predicted
�t+1 for the timesteps t = 88 and t = 89 of trading in FGBM Mar16 on Feb 8, 2016.
The predictive distributions have close resemblance to Normal distributions.

perspective for FGBM Mar16 than for the equities contracts because of its much
higher liquidity.

In addition to the Q-Q plots, we will also perform two-sided hypothesis testing in
relation to these predictions (see Section 4.1.3). We have only considered predictions
on the shorter sampling interval and the results are summarized in the table below.

Exceeds Trials p-value
FGBM Mar16 35 565 0.21
Adidas AG 14 458 0.054
Nordex AG 22 322 0.16

The number of observations, or trials, di�er between the financial instruments for
two reasons. The first being that the trading day for FGBM Mar16 is longer than for
the stocks, and the second being that because of how the input data was structured,
we had to use 90 second intervals for Nordex AG. We can see that in neither of
the cases the null hypothesis can be rejected—indicating that our predictions are
describing the observations well.

5.3.3 Clustering e�ects

In Figure 5.9 we can see that the Q-Q plots aiming to reveal any potential serial
issues follows a uniform distribution perfectly. That means that the predictor does
not su�er from any clustering e�ects; it quickly adapts to new situations.
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FGBM
Mar16

Adidas
AG

Nordex
AG

Figure 5.8. Uniform Q-Q plots for the probabilities that the predicted �t is lower
than or equal to the realized Ât for three financial instruments. The left plots are
taken with sampling length �t = 1 min and the right plots are taken with sampling
length �t = 10 min. There’s a strong uniform behaviour in all of the cases, best seen
in the predictions for the equities.
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Figure 5.9. Q-Q plots of �ut against the theoretical distribution of the di�erence
between two uniformly distributed random variables for FGBM Mar16 (left), Adidas
AG (middle) and Nordex AG (right) on Feb 3, 2016, using a sampling interval �t = 1
min. In none of the three cases can any clustering e�ects be identified.

Figure 5.10. Q-Q plots for the probabilities that the predicted �t is lower than or
equal to the realized Ât when b are half their optimal values (right) and twice their
optimal values (left) for trading in Adidas AG on Feb 3, 2016. The sampling length
used is �t = 1. The estimate remains good for smaller ◊ but gets worse as more
variance is added.

5.3.4 Hyperparameter sensitivity
As discussed above, the MLE for ◊ varies across days (see Figure 5.4), which could
be problematic with our choice of ◊

ú
k. In the standard case, we will get good perfor-

mance with this set-up, as seen above, but we also want to explore the edge-cases.
For this reason, we will perform a quick sanity check to see how the predictions are
a�ected by halving or doubling the values of b, compared to their same-day MLE
values. We will only consider same-day MLE values of ‡ here since these estimates
are quite stable across days.

In Figure 5.10 we show the distributions of the cumulative probabilities for
observed Ât+1 compared to the predicted values. We see that when b is half the
optimal value, we still obtain good performance. This might indicate that the
transition kernel specified in the model is di�using a bit faster than necessary.
When looking at the plot for b being twice the optimal values, we can see that the
variance added by this di�usion results in considerably fatter tails for the predictor.
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Discussion

In this chapter we will discuss the results that we have found, the choices that we
have made and what to think about when conducting similar type of research.

6.1 Notes on the framework
The framework is intentionally modular in design. It is perfectly possible to replace
the bootstrap filter with a more advanced one—for example, a filter using an adap-
tive re-sampling scheme. This adds further value to the framework and makes it
more future-proof.

We have chosen to implement relatively simple forward and backward filters in
this thesis. However, they are both robust and well-studied, which we appreciate.
Trying to make everything overly complicated when not necessary is generally a
bad thing. Therefore, we stick to simplicity for now, but at the same time keep the
door open for improvements.

6.1.1 On-line inference
In this thesis, we have only considered the most simple approximation of ◊

ú
k. Even

with this approximation, we generally obtain a well-performing predictor. The
only down-side seem to be that we get unnecessarily fat tails in the predictive
distribution at times. This could indicate either that the Laplacian transition kernel
is creating excessive noise, or that we simply need to make sure the hyperparameter
approximation is not overestimating the b parameters. Apart from the slightly fat
tails, the predictor produces consistent results and does not su�er from clustering
issues.

6.1.2 Posterior p-values
In this thesis we have focused on the full day’s sample of p-values, called {ut}T

t=1.
This has been used to show that the predictions are consistently good throughout
the day. Further, we have shown how to formally test the tail behaviour of the
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predictive distribution—with good results. By formulating similar (one-sided) tests,
it would be possible to detect anomalies; days with unpredictably high dynamics.

In addition to looking at the full day, each of these values convey something
in their own right. Each value ut represents the cumulative probability for its
associated observed value Ât. A value close to zero or one means that the observed
value is highly unexpected, given the available history of observations. This could
be used for finding interesting events that are hard to explain under this model.

6.2 Data handling

When analysing actual trading data it is of utmost importance to handle the data
with care. Even if the data is good, which is very rare, there are many pitfalls to
be aware of.

In this thesis we have focused purely on analysis of executed trades. However,
there are several di�erent kinds of executed trades. Since we are trying to model
the intra-day dynamics, we have chosen to only consider trades being executed in
the time period between the opening auction and the closing auction, excluding the
trades executed during any of those auctions. Some markets also have intra-day
auctions that you have to be aware of, as well as pre- and post-trading.

Further, we have also chosen to not consider over-the-counter (OTC) trades,
as these are not part of the regular central limit order book trading. Depending
on the data source, OTC trades might be blended in with the electronic trades,
potentially adversely impacting the analysis because of their distinct characteristics
(huge volumes, out-of-line prices, etc.).

6.3 Notes on the scaled volume imbalance

The scaled volume imbalance is a very promising quantity. Looking back at Section
2.1.5 we can see that our scaled volume processes Q

B and Q

S are simply aggregations
of the trade-by-trade price impacts found by Lillo et al (up to a proportionality
constant), having the concavity constant — set to 1/2. This value both corresponds
well to the empirical evidence in the literature, and makes the distribution of the
resulting scaled volumes ‹ express a very clear exponential behaviour.

Since we are looking at a very small scale, using the aggregated trade-by-trade
price impacts suggests that � could better represent the information conversion
rate, or the information flow in the markets, than the standard volume imbalance.

A common practice when analysing the traded volumes, is to not distinguish
between buyer-initiated and seller-initiated volumes. We argue that this is not
optimal since the incentives for buying and selling are very di�erent, leading to a
fundamental asymmetry in these two. For example, in the FDAX Jun14 data from
April 28, 2014 the average (pooled) volumes were 3.1 for selling, but only 1.8 for
buying. At the same time, the total seller-initiated volume and the total buyer-
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initiated volume, over the whole day, were roughly the same. Since the power-law
is not additive this asymmetry gives rise to e�ects that are hard to fit.

By studying buyer-initiated and seller-initiated trades separately, we have found
meaningful and interesting patterns in how they behave, reflecting this asymmetry.

6.4 Intra-day changes
There are several intra-day e�ects that motivates the use of a dynamic model. We
have previously mentioned the diurnal seasonality. Another thing that a�ects intra-
day trading is the steady flow of information in our connected society. By allowing
the arrival intensities to vary throughout the day, we can observe what is actually
going on in the markets.

This also means that we are able to observe sudden changes in the flow of
information. For example when news are released, we can expect the dynamics to
be pushed to their boundaries. This should allow for easy extension of the framework
that we have developed to allow for detection of news events, such as releases of
quarterly reports or M&A’s. Any event where the dynamics are violated, meaning
that we see sudden unexpected jumps in the latent variables, indicates some type
of anomalous event.

When performing our prior sensitivity analysis we limited ourselves to only look
at changes in b. We are motivating this choice by the fact that the relative magnitude
for the changes in µ is much smaller than for the ⁄. Also, the ‡ hyperparameters
were all much more stable across di�erent days, than the b hyperparameters.

6.5 Sampling parameters
There are two parameters that we have used in this thesis that are not really part
of the set of hyperparameters. Those parameters are the sample interval length �t

and pooling threshold · . The reason why we have excluded them from the model is
that they concern how the observations are sampled, rather than the model itself.
Because of this, we have chosen to call these parameters the sampling parameters.

6.5.1 The pooling threshold
The choice to use · = 1 ms is very simplistic, but still manages to capture the things
we need it for. Rather than searching for an optimal values, it would probably be
better to extend the method for pooling trades to, for example, identify recurrent
fixed-lag arrivals.

6.5.2 The sample interval length
Contrary to · , the sample interval length could be more interesting to examine
closer. In this thesis, we have assumed that all dynamics depend purely on real
time. This choice was heavily based on a pre-study that we made on data from
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2014. State movement in event time seemed to be much more volatile. Because
modelling in real time is also more intuitive, this was then the obvious choice.

As we are looking at high-frequency trading in this thesis, we have set on rather
small values for �t to capture rapid changes in the markets. However, there is no
point in having a sampling time that is significantly smaller than the time it takes
for the underlying processes to change, since that would only introduce a lot of
unnecessary variance. Our results show that the optimal hyperparameters ◊ grow
with �t. This is intuitive, since a bigger �t means that we evolve the Markov chain
less frequently, potentially resulting in bigger jumps. On the other hand, it increases
sub-linearly. This can be explained by a smoothing argument. By observing longer
periods of time each time, sporadic instantaneous trading bursts will average out
over the whole period.

In this thesis, we do not set out to find a sweet spot for the optimal value of
�t. The choice of �t might also depend on the specific goals for the intended
analysis. For example, the optimal value for �t when trying to create a stable
estimator for ◊t+1 might not be the same as the optimal for studying goodness-of-fit
for alternative transition kernels. It might even be sensible to define an adaptive
sampling period that is updated throughout the day, ”gluing together” trading days
to allow for continuous on-line learning.

6.6 Information carried by trades
In this section we will discuss the connection between the model presented in this
thesis and the concept of information in the markets. We have tried to make sure
that the quantities used in the model all carry information, and the way they are
utilized is designed to extract this information.

We will start by a short reasoning around the importance of trades in the context
of risk, as we mentioned in Remark 1. Then we will present discussions on what
exact attributes of the trade that actually carries this information and how this is
captured in our model.

6.6.1 Actions and risk

Considering the three possible actions listed in Section 6.6, neither (A), nor (B)
is necessarily associated with any immediate risk. After placing a limit order it is
possible to, at any time prior to execution, cancel the order without any financial
loss. Therefore, there are strategies associated with placing and (possibly) cancelling
a limit order that is not necessarily tied to information about the particular asset.

On the other hand, by placing a market order the trader will be executing a
trade and, hence, be subject to direct financial risk. This pronounced demarcation
in associated financial risk for the di�erent actions suggests that the market orders
will carry information to a much higher extent than limit orders. We can think of
the information carried in trades as realized information.
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That this action would carry the most information out of the three is also con-
sistent with the reasoning in [3, Section 6.1]. That conclusion might, however, come
as a little counter-intuitive, since it is argued that: ”the trade carries little new
information”. To understand this, we must realize that the argument only refers to
the fact that trades might not supply any new information in addition to what is
already present in the limit orders. Nothing is said about the overlap in information
between the orders and trades.

6.6.2 Trade direction
The primary information carrying attribute is the direction of the trade; whether
it is buyer-initiated or seller-initiated. The direction reveals something very fun-
damental of the trader’s belief in regards to the asset. If you, for example, buy
an asset it means that you expect it to not decrease in price. This is captured by
the usage of two separate processes Q

B and Q

S as defined in our model. In, for
example, [6], direction is the only attribute that is considered.

6.6.3 Trade volume
The other important attribute is the volume of the trade. Normally, the more shares
you buy, the more certain you are that your belief is correct regarding the direction
of future price movements. However, buying 10 shares does not necessarily mean
that you have 10 times more information than if you would only have bought 1
share. This is the same as the concavity discussed in Section 2.1.4.

In our model, volume plays a central role, but used under a concave transform,
implying that the amount of information is better represented in our model than
in, for example, [18].

6.6.4 Trade price
The last interesting attribute is the price of the trade. Decoding the information
contained carried in the price is however not as straightforward as it might sound.
The first piece of information the price conveys is that the trader believes the price
to be ”favourable” in the sense that by buying at price x, the trader believe the
price to not fall below x. On the other hand, this is the same information that is
already conveyed by the direction of the trade.

The second piece of information the price conveys is risk. This is motivated by
the following reasoning: by comparing the traded price to a real price the traded
price would convey information about the trader’s belief in the risk of unfavourable
future changes to the price. This is equivalent to information about associated risk
and not about the price itself. Since a real price cannot be observed it is generally
taken to be the mid-price, which is analogous to observing the size of the spread
at the time of the trade. Thinking of it this way, the connection to risk is more
apparent.
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In the context of price impact we will therefore argue that it might be sensible
to not consider the trade’s price as (a) it is di�cult to quantify the information
correctly and (b) the traded price primarily conveys information about risk, but
without a model for the fair price for the asset, it’s useless.
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Conclusions and Future work

In this chapter we will go through the major contributions of this thesis and potential
openings for future extensions on these results.

7.1 Conclusions
By using hidden Markov models and applying a specialized Monte Carlo machinery
including some of the most recent particle-based methods; the bootstrap filter,
backward sampling and sequential Monte Carlo expectation-maximization, we have
shown that it is possible to build a holistic framework for analysing some of the
hottest topics in modern market microstructure theory.

Within this framework we have defined the scaled volume imbalance �. By
drawing from previous work in the field of limit order book modelling, along with
derivations of clever assumptions, we have developed an interesting HMM for this
process, to study using this framework. By utilizing the Monte Carlo machinery, we
have successfully produced accurate predictions and shown that our model satisfy
the other criteria of interest as well, such as absence of clustering e�ects and stability
in regards to the prior.

Regarding the assumptions that we have made, based on our findings, we can
justify the use of the memorylessness property in a dynamic setting. This provides
an excellent alternative to the standard approach of using a power-law distribu-
tion, which is harder to fit and struggles to describe intra-day features such as the
diurnality. In particular, we have found that modelling the trade generation as
two inhomogeneous Poisson processes, separating between the buyer-initiated and
seller-initiated trades, works very well.

Due to the flexibility of this framework anyone can create and assess similar non-
linear hidden Markov models for market behaviour that has only been studied in a
static context before. This provides a natural bridge between market microstruc-
ture theory (which seeks to describe observed relationships) and limit order book
modelling (which tries to model the underlying dynamics of trading).

Any hyperparameters associated with proposed hidden Markov models can be
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learnt from data by employing the sophisticated SMCEM algorithm, providing
greater insight in their mechanics. Further, based on these models, inference and
prediction can be made on-line with very high performance, both in terms of accu-
racy and with respect to computational cost.

7.2 Future work
Since the angle taken in this thesis is by some means new territory, especially in the
field of market microstructure, we believe that this could open up many interesting
opportunities for future extensions.

Regarding the framework, the most immediate thing to address would be to
investigate how to define a better approximation ◊

ú
k for the hyperparameter ◊k, given

only historic data. Also, studies of how to choose �t would be very interesting.
For future work in relation to the scaled volume imbalance and its associated

model, we would recommend trying to establish the connection to price impact as a
starting point. The scaled volume imbalance has been defined to carry the highest
degree of market information possibly—from a market microstructure theory point-
of-view. If we are lucky, it should have the potential to outdo the standard volume
imbalance in this area.

The connection to information suggests that the scaled volume imbalance could
be very useful for detecting news events or trading anomalies, just by analysing
the trades. A possible way to go around doing that would be to look for sudden
violations of the state dynamics of the HMM. This can be motivated by the inter-
pretation of the scaled volume imbalance as conveying the rate of information flow.
Any unforeseen changes to this flow would then indicate some external event that is
not part of the model, for example, a news release or a potentially fraudulent action
by any of the traders, resulting in unforeseen trading activity. Another approach,
as discussed earlier, would be to adopt a daily hypothesis test to detect days with
extreme dynamics.

To improve the performance of the predictions, and to reduce variance, the
model could be extended to allow for correlations between the movements of the
⁄ processes. Such correlations have been discussed in literature. Another possi-
ble modification would be to compare our HMM with models having alternative
choices of transition kernels. For example, what would happen if µ was more or less
stationary?

And, finally, it would of course be very interesting to try this framework for
other quantities associated with market microstructure, too. As long as appropriate
assumptions regarding the underlying dynamics are known, any observable quantity
can be studied, making this a novel tool for predicting market phenomena.
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Appendix

8.1 Proofs
8.1.1 EM Algorithm proof outline
The derivation of the EM-algorithm is rather involved but we will outline the steps
generally taken to motivate it below. Please note that we will not provide the proof
for convexity of the optimization problem.

To start o�, take the logarithm of the likelihood function p◊(y1:T ) as it is expressed
in Equation 2.5

log (p◊(y1:T )) = log (p◊(x0:T , y0:T )) ≠ log (p◊(x0:T | y0:T ))
Proceeding by multiplying by the density p◊Õ(x0:T | y0:T ) on both sides of the equa-
tion above and computing the expectation of the unobservable data x0:T , with
respect to any parameter ◊

Õ œ �, we obtain the following expression

log (p◊(y1:T )) = Q(◊, ◊

Õ) ≠ H(◊, ◊

Õ) (8.1)
Here we have introduced the two entities Q and H, which are known as the auxiliary
quantity and the entropy, respectively. These are defined by

Q(◊, ◊

Õ) = E◊Õ [log (p◊(x0:T , y0:T )) | y0:T ]

and

H(◊, ◊

Õ) = E◊Õ [log (p◊(x0:T | y0:T )) | y0:T ]

By subtracting the log-likelihood for ◊

Õ from Equation 8.1 we obtain

log (p◊(y1:T )) ≠ log (p◊Õ(y1:T )) =
!Q(◊, ◊

Õ) ≠ Q(◊Õ
, ◊

Õ)
"

+
!H(◊Õ

, ◊

Õ) ≠ H(◊, ◊

Õ)
"

In this expression, since ◊ and ◊

Õ both belong to the same space �, it is possible to
identify H(◊Õ

, ◊

Õ) ≠ H(◊, ◊

Õ) as the Kullbeck-Leibler divergence

H(◊Õ
, ◊

Õ) ≠ H(◊, ◊

Õ) = K(p◊Õ(x0:T | y0:T ) Î p◊(x0:T | y0:T )) (8.2)
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Then, by applying Gibb’s inequality the following result is obtained

H(◊Õ
, ◊

Õ) ≠ H(◊, ◊

Õ) Ø 0,

which leads to the inequality

log (p◊(y1:T )) ≠ log (p◊Õ(y1:T )) Ø Q(◊, ◊

Õ) ≠ Q(◊Õ
, ◊

Õ),

For the parameter ◊

ú, which maximizes Q(◊, ◊

Õ) with respect to ◊, the following
inequality holds

Q(◊ú
, ◊

Õ) Ø Q(◊Õ
, ◊

Õ),

by which we can conclude that the EM-algorithm produces a sequence of parameters
{◊k, k = 1, 2, . . .} for which the log-likelihood function is non-decreasing.
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