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Abstract

In response to financial crises and opaque practices, governmental entities and financial regula-
tory bodies have implemented several pieces of legislature and directives meant to protect investors
and increase transparency. Such regulations often impose strict liquidity requirements and robust
estimations of the risk borne by a financial firm at any given time. Value at Risk (VaR) measures
how much an investment can stand to lose with a certain probability over a specified period of time
and is ubiquitous in its use by institutional investors and banks alike. In practice, VaR estimations
are often computed from simulations of historical data or parameterized distributions.

Inspired by the recent success of Arimond et al. (2020) in using a neural network for VaR
estimation, we apply a combination of recurrent neural networks and a mixture density output layer
for generating mixture density distributions of future portfolio returns from which VaR estimations
are made. As in Arimond et al., we suppose the existence of two regimes stylized as bull and bear
markets and employ Monte Carlo simulation to generate predictions of future returns. Rather than
use a swappable architecture for the parameters in the mixture density distribution, we here let all
parameters be generated endogenously in the neural network. The model’s success is then validated
through Christo↵ersen tests and by comparing it to the benchmark VaR estimation models, i.e.,
the mean-variance approach and historical simulation.

We conclude that recurrent mixture density networks show limited promise for the task of
predicting e↵ective VaR estimates if used as is, due to the model consistently overestimating the
true portfolio loss. However, for practical use, encouraging results were achieved when manually
shifting the predictions based on an average of the overestimation observed in the validation set.
Several theories are presented as to why overestimation occurs, while no definitive conclusion could
be drawn. As neural networks serve as black box models, their use for conforming to regulatory
requirements is thus deemed questionable, likewise the assumption that financial data carries an
inherent pattern with potential to be accurately approximated. Still, reactivity in the VaR esti-
mations by the neural network is significantly more pronounced than in the benchmark models,
motivating continued experimentation with machine learning methods for risk management pur-
poses. Future research is encouraged to identify the source of overestimation and explore di↵erent
machine learning techniques to attain more accurate VaR predictions.

Keywords: Machine learning, Neural networks, LSTM, MDN, Mixture density, Value at Risk,
VaR, Risk, Financial mathematics, Finance
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Value at risk estimering med neurala nätverk

En recurrent mixture density approach

Sammanfattning

I respons till finanskriser och sv̊arfattlig verksamhetsutövning har överstatliga organ och finans-
myndigheter implementerat lagstiftning och utfärdat direktiv i syfte att skydda investerare och
öka transparens. S̊adana regleringar förelägger ofta strikta likviditetskrav och krav p̊a redogörelse
av den finansiella risk som en marknadsaktör har vid en given tidpunkt. Value at Risk (VaR)
mäter hur mycket en investering kan förlora med en viss sannolikhet över en p̊a förhand bestämd
tidsperiod och är allestädes närvarande i dess användning av institutionella investerare s̊aväl som
banker. I praktiken beräknas estimeringar av VaR framför allt via simulering av historisk data eller
en parametrisering av densamma.

Inspirerade av Arimond et als (2020) framg̊ang i användning av neurala nätverk för VaR es-
timering applicerar vi en kombination av ”recurrent” neurala nätverk och ett ”mixture density
output”-lager i syfte att generera mixture density-fördelningar för framtida portföljavkastning. Likt
Arimond et al. förutsätter vi existensen av tv̊a regimer stiliserade som ”bull” och ”bear” mark-
nader och applicerar Monte Carlo simulering för att generera prediktioner av framtida avkastning.
Snarare än att använda en utbytbar arkitektur för parametrarna i mixture density-fördelningen
l̊ater vi samtliga parametrar genereras endogent i det neurala nätverket. Modellens framg̊ang valid-
eras via Christo↵ersens tester samt jämförelse med de prevalenta metoderna för att estimera VaR,
det vill säga mean-variance-metoden och historisk simulering.

V̊ar slutsats är att recurrent mixture density-nätverk enskilt uppvisar begränsad tillämpbarhet
för uppgiften av att uppskatta e↵ektiva VaR estimeringar, eftersom modellen konsekvent överestime-
rar den sanna portföljförlusten. För praktisk användning visade modellen däremot uppmuntrande
resultat när dess prediktioner manuellt växlades ner baserat p̊a ett genomsnitt av överestimeringen
observerad i valideringsdatat. Flera teorier presenteras kring varför överestimeringen sker men in-
gen definitiv slutsats kunde dras. Eftersom neurala nätverksmodeller agerar som svarta l̊ador är
deras potential till att bemöta regulatoriska krav tveksam, likväl antagandet att finansiell data har
ett inneboende mönster kapabelt till att approximeras. Med detta sagt uppvisar neurala nätverkets
VaR estimeringar betydligt mer reaktivitet än i de prevalenta modellerna, varför fortsatt exper-
imentation med maskininlärningsmetoder för riskhantering änd̊a kan vara motiverat. Framtida
forskning uppmuntras för att identifera källan till överestimeringen, samt utforskningen av andra
maskininlärningsmetoder för att erh̊alla mer precisa VaR prediktioner.

Nyckelord: Maskininlärning, Neurala nätverk, LSTM, MDN, Mixture Density, Value at Risk,
VaR, Risk, Finansiell matematik, Finans
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1 INTRODUCTION

1 Introduction

Mathematical finance has in recent years become increasingly dependent on applying statistical
machine learning techniques to inform or support decision making [KTH]. Despite the capricious
nature of financial data, there have been important advancements in making accurate financial
forecasts using advanced machine learning. While the use of machine learning in finance is not new
in and of itself, technological advancements have extended the realm of possibilities for financial
modeling. Concurrently, in the wake of financial crises and in response to opaque business prac-
tices, the subject of financial risk and transparency has begun to consume a greater part of the
discussion. Several pieces of legislature have been formulated since the 2008 financial crisis aim-
ing to increase transparency and protect investors, such as MIFID-II and Basel-III [NSS]. Many of
these legal frameworks require financial firms to continually calculate di↵erent measurements of risk
and diligently report these to the appropriate supervisory authority (such as Finansinspektionen in
Sweden). Aside from regulatory purposes, accurate risk assessments are of course beneficial for the
firm in question in order to make more well-informed decisions when in- or divesting in di↵erent
securities.

One of the most common measures of risk is Value at Risk (VaR) [HH]. In essence, VaR is the
amount of money one stands to lose from an investment over a specified time period and with
a specified confidence level. If the 1-week 5 % VaR of an investment is $100 it means that the
investment will with 95 % certainty not result in a loss exceeding $100. Equivalently, the loss will
exceed $ 100 with a probability of 5 %. The most common methods for calculating VaR are usually
divided into the parametric and non-parametric approaches. For the former, a normal distribution
is often assumed wherein one constructs a normal distribution with parameters µ and �

2 being the
mean and variance of the investment based o↵ a sample of previous returns; this is referred to as
the mean-variance approach. For the non-parametric case, the most common method is historical
simulation, in which the VaR is chosen as an empirical quantile of historical returns. Both of these
methods have their respective pros and cons, yet a common advantage is their relative simplicity
and low computational requirements. A common disadvantage is that both methods fail to ade-
quately capture the tail risk of an investment, i.e., the worst possible outcomes.

In 1994, Christopher Bishop formulated the idea of mixture density networks (MDNs), in which the
output layer of a neural network produces parameters for a mixture of distributions which should
in principle be able to ”represent arbitrary conditional probability distributions in the same way
that a conventional neural network can represent arbitrary functions” [BC], which gives credence
to the notion of more accurately capturing the tail risk of an investment. While documentation on
the use of MDNs exists in several domains, their application in a financial context is more sparsely
documented. Inspired by the recent success of Arimond et al. [ABHKW], this thesis wishes to
explore the use of mixture density networks for VaR prediction, with the distinction of letting all
parameters be produced within the network rather than only the mixture probabilities. To evaluate
the performance of the MDN approach, the mean-variance and historical simulation methods are
used as benchmarks. Improvement upon the benchmark methods would entail increased accuracy
in VaR prediction and imply significant financial benefits by enabling investors to take on greater
risk and improve liquidity.

1



1 INTRODUCTION

1.1 External Project Partner

At the intersection of advanced technology and financial risk lies the Swedish fintech company
Scila, who provides risk mitigation services in a standardized way. This enables their customers
to conform to the plethora of regulations imposed by regulatory institutions, without deviating
from their core business. Scila is independent of trading venues and focuses solely on product
development. The purpose of this thesis is to explore ways in which Scila can improve their risk
management services by utilizing state-of-the-art machine learning techniques benchmarked against
established methods. This project is thus conducted under the supervision and for the benefit of
Scila AB. Björn Thornquist, head of product development, will act as supervisor on Scila’s behalf. In
analogue to the Swedish copyright act (1960:729) article 40 a §, the authors of this thesis relinquish
any and all intellectual property developed within the framework of this thesis to Scila AB.

1.2 Previous Research

Bishop introduced the idea of combining conventional neural networks and mixture density models
in 1994, demonstrating their capability on robot inverse kinematics. ”Long Short-Term Memory”
(LSTM) networks were introduced in 1997 by Hochreiter and Schmidhuber, a form of recurrent
neural network well suited for time series data capable of learning patterns between lags of arbi-
trary sizes [H&S]. In 2013, Alex Graves successfully utilized LSTMs with a MDN-output layer for
generating sequences of realistic handwriting [AG]. Inspired by the success of Gu, Kelly, and Xiu
in applying neural networks for measuring asset risk premia [GKX], Arimond et al explored the
usage of several network architectures and a MDN-layer for estimating VaR-thresholds [ABHKW].
In this context, the mixture probabilities (of which there were two) are stylized as regime prob-
abilities, i.e., probabilities of being in a bull or bear market - markets where prices are generally
on the rise or decline, respectively. In their paper, only the mixture probabilities are produced
within the network and established models (such as Hidden Markov Models) are applied to infer
the distribution parameters. Thus, there exists some incentive for a purely neural network based
approach to either promote or eschew the idea of using MDNs for estimating VaR. Additionally,
documentation on the usage of MDNs in a financial context is scarce, including a robust outline of
the underlying methodology.

1.3 Objective

The objective of this thesis is to explore the potential of LSTM-MDNs in the task of generating VaR
predictions. Specifically, a neural network with LSTM-layers and a mixture density output layer is
to be used for constructing a mixture density distribution to model future returns of a portfolio.
Moreover, due to the probabilistic nature of mixture densities, a secondary objective of this thesis
is to explore the network’s ability to detect bull and bear regimes within a financial market.

1.4 Scope and Limitations

As the literature regarding the usage of LSTM-MDNs in a financial context is quite scarce, this
thesis aims to explore its potential while providing deeper insights on the methodology as well as
the generated results. Moreover, the data used has been manually extracted from open sources such
as Google Finance. As such, there are some limitations in regard to the quality and availability of
old financial data. Due to this, 20 years of historical data was used in order to ensure quality and

2



1 INTRODUCTION

availability. In relation to this, considering the aim of this thesis, only adjusted1 historical stock
price data from one financial market was used (see 3.2.1). The idea is that the findings of this thesis
can later be extended to evaluate LSTM-MDNs on di↵erent asset types and markets.

1.5 Research Questions

This thesis aims to answer the following research questions:

• To what extent can LSTM-MDNs produce more accurate sampling distributions for VaR
estimation than prevailing methods (i.e., historical simulation, mean-variance approach)?

• Can LSTM-MDNs successfully detect market regimes based on historical data?

• If successful, are LSTM-MDNs economically viable as a VaR model regarding model training,
computation time, data requirements, and interpretability?

1Closing price amended to reflect the value of the stock after taking corporate actions (such as dividend payouts
and splits) into account.
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2 THEORETICAL FRAMEWORK

2 Theoretical Framework

2.1 Financial Theory

The following section is intended to give a rudimentary basis for the financial themes of this the-
sis, primarily regarding the prerequisite knowledge necessary to apply the subsequent statistical
methods.

2.1.1 Financial Forecasting

A seminal problem in finance is forecasting future asset prices. According to the E�cient Market
Hypothesis (EMH), the asset price contains all available information about the asset [EF]. As such,
by the EMH, the asset is priced correctly, and profits cannot be generated on the basis of the asset
being under- or overvalued. Despite the ubiquity of the EMH in academic texts, both individual
and institutional investors seek to outperform the market in order to generate positive returns on
their portfolios. This thesis will focus on quantitative approaches for such an objective, which to
some extent necessitate making numerically driven guesses for future returns. Success in this do-
main has recently been achieved by Gu, Kelly and Xiu in their paper Empirical Asset Pricing via
Machine Learning in which artificial neural networks are employed to measure risk premia [GKX].
The authors attribute the success of neural networks in this context to their capability of capturing
non-linear predictor interactions among the data. Whereas other prediction methods necessarily
require some formulation of the function and relationships among variables (such as e.g. a multiple
linear regression), neural networks have been shown to be universal approximators, i.e. they can
determine the relationship between input and output given that some such mapping truly exists
[HSW]. The conjecture in this thesis is thus that there indeed does exist a mapping from previous
returns to future returns, and that it can be learned by a neural network. However, rather than
predicting a point forecast, by using a mixture density network one instead acquires a range of
potential returns as conditioned by a distribution. This is significantly less strict than assuming a
one-to-one function, while still maximizing the vast potential neural networks have to o↵er.

2.1.2 Financial Data

When working with financial data, there are a number of beneficial adjustments one could and in
many cases should make to the data before modeling. First, let the current time be denoted by
0 and consider a time in the future denoted by T. We consider also a portfolio at time T to be
some function of the vector ST of n stock prices, i.e. ST = [S1

T , S
2
T , ..., S

n
T ] where the superscript

i = 1, 2, ..., n denotes the i :th asset. It is further assumed that one has access to samples of the share
price vector from the D equally spaced points in time preceding the time T in the future, including
the current time i.e. [S�D,S�D+1, ...,S0]T; negative subscripts here represent times in the past,
and the superscript T denotes transposition, thus giving us a (D+ 1)⇥ n-matrix containing prices
of the n assets over the last D equally spaced points in time as well as the current prices. For this
example we assume that these are daily stock prices, but in general any equidistant time unit may
be used, e.g. weeks, months, quarters, milliseconds etc. The future time T is thus e↵ectively one
day (or other time unit) in the future: T = 1. The stock prices may be quite strongly dependent
on each other on a day-to-day basis, while prices far apart in time may be very di↵erent. For any

4



2 THEORETICAL FRAMEWORK

given day t 6= �D, the vector of stock prices St = [S1
t , S

2
t , ..., S

n
t ] may be transformed into a vector

of stock returns Rt = [R1
t , R

2
t , ..., R

n
t ], where each R

i
�t is defined as

R
i
�t =

S
i
�t

S
i
�t�1

� 1 (1)

for t = 0, ..., D � 1, as there is no access to the price of stock i before day -D. Rather than a
matrix of daily stock prices, we now have a D⇥ n-matrix daily returns: [R�D+1,R�D+2, ...,R0]T .
This transformation is done due to the assumption that returns are more weakly dependent than
prices, and nearly identically distributed [HH]. This is illustrated in the figures below: the upper
panel shows the adjusted closing price of Alphabet Inc. plotted for each day from 2004-08-19 to
2020-12-31, whereas the corresponding returns are shown in the lower panel. It is clear that price
changes when viewed in nominal terms are highly dependent (the price of an asset on day t is a
good indication of what the price will be on day t+1 ), while this is significantly harder to say for
adjacent returns.

Figure 1: Alphabet’s (ticker: GOOGL) adjusted closing price from 2004 to 2020 (above) and Alphabet’s
daily return from 2004 to 2021 (below).

Moreover, the distributional characteristics of past returns are to some extent representative for
RT , the vector of percentage returns for the future time T which one desires to forecast. The
abstraction is e↵ectively that the returns serve as nearly independent and identically distributed
(i.i.d.) observations of random variables drawn from the unknown probability distribution of VT .
We denote the portfolio return by VT , and it is given by some function f of the portfolio assets’ re-
turns, i.e. VT = f(RT ), on which statistical methods can be applied to determine the distribution.
Considering that this approach assumes historical samples of returns to be samples from a proba-
bility distribution of a future portfolio value, there is an implicit assumption that past changes are

5



2 THEORETICAL FRAMEWORK

indicative of future changes. Whether or not this is true is a subject of great debate, yet imperative
if one wishes to use statistical methods for forecasting of financial data. For this thesis, returns are
thus used and the portfolio function f is discussed in section 3.2.2.

2.1.3 Risk

A fundamental aspect in finance is the trade-o↵ between risk and reward. Vast research has been
made in optimizing the trade-o↵ in such a way that the maximum profit is attained while exposure
to risk is minimized. The most seminal paper on this subject was penned by Harry Markowitz in
1952, whose eponymous portfolio seeks to diversify over an asset universe in order to maximize the
risk-adjusted return [HM]. A measure of risk-adjusted return is the Sharpe ratio:

Sharpe Ratio =
Rp �Rf

�p
(2)

Where Rp is the return on the portfolio, Rf the risk-free rate and �p the standard deviation of
the portfolio’s excess return. In the Markowitz framework, risk is thus operationalized as variance.
While this constructional choice is intuitive and simple, it lacks the depth necessary for real-world
application. To illustrate this, consider two portfolios with equal expected return and variance; these
would have the same Sharpe ratio, yet the form of the variance might look extremely di↵erent. One
portfolio could have a certain variance due to small, frequent losses while the other could have the
very same variance owing to rare but very massive losses. While a perfectly rational investor (Homo
Economicus 2) would assign these portfolios equal value, most investors would not want exposure
to massive losses, regardless of the potential upside. This phenomenon is called loss aversion and
its existence was formulated by prominent behavioral economists Kahneman and Tversky in 1984
[K&T]. In fact, Kahneman and Tversky postulated that inviduals are twice as averse to losses as
they are prone to gains; in other words, for an investment with a potential loss of $1, the potential
gain must be $2 or higher. Accepting this as true, one can understand the need for more robust
measures of risk than variance, which in fact does not distinguish between positive and negative
returns. Since the work of Sharpe and Markowitz, a multitude of more useful risk measures have
been developed; Value-at-Risk or VaR will be the focal point of this thesis and is defined in section
2.2.1.

2.1.4 Market Regimes

Market trends are often stylized as bear and bull markets. In bear markets, prices tend to fall and
investors exhibit pessimism toward future price development, whereas the opposite holds true for
bull markets. While the exact criteria for being in a bull or bear market varies in the literature, this
thesis will assume that states characterized by lower or even negative returns and more volatility are
bear markets while those with higher or even positive returns are bull markets. As such, the period
during and after the financial crisis of 2008 was famously bearish, while the following years up until
2020 have undoubtedly been more bullish. While these regimes have been clearly noticeable from
simply regarding index charts, this thesis seeks to identify more short-term regime changes, which
are significantly more di�cult to notice by the naked eye. It is often easy to identify the current

2The term Homo economicus or ”Economic man” was coined by John Stuart Mill and later popularized by
behavioral economists such as Richard Thaler and Daniel Kahneman. The term signifies a hypothetical market actor
with infinte capacity to make rational decisions.
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2 THEORETICAL FRAMEWORK

overarching market regime, but it would be beneficial for investors to identify the current market
sentiment automatically and accommodate one’s investments accordingly.

2.2 Mathematical Theory

The following section outlines the necessary financial mathematics necessary to understand the
thesis’ main task, i.e., generating precise VaR predictions.

2.2.1 Value at Risk

One of the most widely used measures of risk is Value-at-Risk (VaR). Formally, the VaR at level ↵
of the profit and loss distribution X is defined as

V aR↵(X) = min{m : P (m · rf +X < 0)  ↵} (3)

where rf is the risk-free rate [HH]. In turn, the right hand side of (3) can be rewritten as

{m : P (m · rf +X < 0)  ↵}

= {m : P (�X/rf > m)  ↵}

= {m : 1� P (�X/rf  m)  ↵}

= {m : P (�X/rf  m) � 1� ↵}

(4)

Setting L = �X/rf and defining X as X = V1 �V0rf , where Vt is the portfolio value at time t, one
can rewrite L as

L = �X/rf = �(V1 � V0rf )/rf = V0 � V1rf (5)

Thus, equation 5 shows that L is the discounted portfolio loss. An alternative, yet equivalent,
formulation of V aR↵(X) in equation 3 is thus

V aR↵(X) = min{m : P (L  m) � 1� ↵} (6)

Using 6, one can thus interpret V aR↵(X) as the smallest m such that the probability of the loss
being at most m is at least 1 � ↵. In other words, V aR↵(X) estimates how much an investment
X could potentially lose with a given probability ↵ over a certain time period. For example, if the
one-week 5 % VaR of an investment is $100, there is a 5 % probability that the investment will lose
$100 or more by the next week.

Moreover, V aR↵(X) is the 1 � ↵-quantile of L. The q-quantile of the random variable L with
distribution function FL is by definition

F
�1
L (q) = min{m : FL(m) � q} (7)

With the notation in (7), we see from (6) that V aR↵(X) thus can be written as

V aR↵(X) = FL
�1(1� ↵) (8)

In order to estimate VaR, there is a need to determine the distribution function FL, in accordance
with 7 [HH]. In essence, there are two types of approaches to doing so: parametric and nonpara-
metric approaches. The most prominent methods for doing so are the mean-variance approach

7
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(parametric) or by historical simulation (non-parametric), and as such these methods will be used
as benchmarks against the thesis’ developed model.

Mean-variance method: In parametric VaR methods, one uses a statistical model to fit a dis-
tribution with estimated parameters to describe a future return RT . A widely used assumption for
financial data is that this distribution, conditioned on past data (observations of Rt for t < T ),
tends to be a Gaussian distribution with some mean µ and variance �. Using the obtained distri-
bution, one can then simply compute the 1�↵-quantile and estimate V aR↵(X) as that value. The
method’s main advantage is its simplicity and speed, as fitting a Gaussian distribution to data is a
readily available feature accessible in a multitude of software packages.

Rather than use the whole historical time window up to the current time t = 0, a so-called lookback
period is chosen, here denoted d, from which the mean and standard deviation is calculated. The
choice of lookback period is in the hands of the analysts, however using the whole period for longer
time horizons is not advised as di↵erent periods are likely to have a large discrepancy in means
and volatilities. Using this method entails that the VaR is not calculated for the first d days.
Thereafter, for each d -day period, one calculates

µ̂t =
1

d

d�1X

j=0

Rt�d+j , for t = 1, ..., T (9)

The variance is calculated as:

�̂
2
t =

Pd�1
j=0(Rt�d+j � µ̂t)2

d� 1
, for t = 1, ..., T (10)

The standard deviation is of course the square root of the above expression, �̂t, also referred to as
the volatility. E↵ectively, equations 9 and 10 are moving averages. For a day t in [1,T ], the VaR
prediction at confidence level ↵ is then generated by taking the 1 � ↵ quantile of the distribution
N (µ̂t, �̂t).

Historical Simulation: In principle, historical simulation works in the same way as the mean-
variance approach, i.e., by choosing a lookback period and calculating the 95 %-quantile; however,
in historical simulation, this is done by simply ordering the observed returns and choosing the
empirical quantile rather than parametrizing and then choosing the quantile. If given access to a
sample of independent copies L1, ..., Ln of the loss distribution L for an investment X, the empirical
estimate of VaR↵(X) is given by

dVaR↵(X) = Lbn↵c+1,n (11)

where L1,n � . . . � Ln,n is the sample of losses ordered ascendingly by size, and b·c denotes the
floor function3. To elucidate this with an example, suppose that there are n = 101 samples of the
loss L and one seeks the VaR at confidence level ↵ = 0.05. This would require ordering the samples
such that L1,101 � . . . � L101,101 and choosing dVaR0.05 as Lb101·0.05c+1,101 = Lb5.05c+1,101 = L6,101.

3The floor function of x is defined as: bxc = max{m 2 Z | x  m}

8
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2.2.2 Mixture Density Distributions for VaR

Implicitly, one thus assumes that all past changes in risk factors follow the same distribution and
that future values will do so as well, both in the historical and mean-variance case. Due to the vast
amount of potentially nonlinear interactions and extreme (often unforeseeable) events prevalent
in financial data, relying on a single parameterized distribution or historical simulation may not
adequately capture the tail risk of an investment. Thus, there is an incentive for a modeling
framework which samples from di↵erent distributions, to account for varying market conditions.
The idea of this is to increase the precision of the VaR estimate by letting the distributions vary
across historical samples as they might be subdued or enhanced by di↵erent macroeconomic or time-
dependent factors. One can interpret e.g. two regimes as bull and bear markets, with corresponding
mixture probabilities (⇡̂k, k = {1, 2}) conditioning the frequency in which a distribution (e.g.
Gaussian with parameters µ̂k and �̂k) is sampled from. Bishop postulated that arbitrary conditional
probability distributions could be approximated by mixture density networks, which inspires the
route taken in this thesis. Of dubious certainty is the assumption that return distributions are
static and thus appropriately modeled by mixture densities. As such, a mixture density enables
modelling an overall population wherein there exists K sub-populations with di↵erent probability
distributions. A mixture density can thus be defined as

P (y|x) =
KX

k=1

⇡k(x)�k(y|x) with
KX

k=1

⇡k = 1 (12)

where �k is the associated probability density for each subpopulation. For the example of bull and
bear markets described above, assuming �k to be Gaussian for each k, �k is thus defined as

�k(y|x) = N (y
��µk(x),�

2
k(x)

�
=

1

�k(x)
p
2⇡

exp

✓
�
||(y � µk(x))||2

2�2
k(x)

◆
(13)

Since there is no theoretical quantile available for mixture density distributions, the procedure for
acquiring VaR estimations boils down to Monte Carlo simulation. The procedure is as follows:

1. Generate predictions of mixture density distribution parameters (⇡̂k, µ̂k, �̂k) for each day in
[0, T ]

2. Using the outputs from step 1, randomly select a regime as conditioned by a Bernoulli dis-
tribution; regime 1 is thus chosen with a probability of ⇡̂1 and regime 2 with a probability of
⇡̂2 = 1� ⇡̂1. Draw a sample from the corresponding distribution N (µ̂k, �̂k)

3. Repeat step 2 a large amount of times for each day

4. Order the simulated losses by size and choose the empirical quantile at the desired confidence
level.

The theory underlying mixture densities in neural networks is detailed in section 2.3.5.

2.2.3 Backtesting VaR-Models

An important aspect in constructing a VaR model is validating its results. A classic approach
to verifying the legitimacy of the model, as suggested by Kupiec, is simply to check whether the

9
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number of VaR estimations smaller than the true return of an asset falls within the confidence level
[KP]. That is, for a confidence level of ↵ = 5%, the number of such violations should be approxi-
mately 5% of the total data points, i.e. ↵N . If this holds true, the model is thus considered accepted.

This type of violation testing lies as a base for multiple other validation methods. Before continuing,
we must first define a violation sequence. We let the true loss of sample n be denoted by Ln and
the estimated loss at confidence level ↵ or dVaR↵ of sample n be denoted by L̂n,↵. Furthermore, we
let In(A) denote the indicator function of sample n, i.e.

In(A) =

(
1 if the event A occurs,

0 else
(14)

We may now define a violation sequence from n = 1 to N as

I
N
n=1(↵) = {I1(L̂1,↵ < L1), I2(L̂2,↵ < L2), ..., IN (L̂N,↵ < LN )} (15)

I
N
n=1(↵) is thus a list of ones and zeros denoting whether a breach has occurred or not over all
samples N , respectively.

A test suggested by Christo↵ersen uses the principle of VaR violations but focuses rather on the
correlations between them [CP]. As such, Christo↵ersen shows that VaR validity corresponds to
confirming the following two hypotheses [CSD]:

• The unconditional coverage hypothesis: the probability of the true return being smaller than
the estimated VaR must be equal to the confidence level. That is, for a violation sequence
I
N
n=1(↵)

P (In(↵) = 1) = E[In(↵)] = ↵ (16)

• The independence hypothesis: VaR violations occurring at di↵erent times must be indepen-
dently distributed. That is, In(↵) is independent from In�k(↵), 8k 6= 0 meaning that VaR
violations in the past do not hold information on future or current violations. Under the
independence hypothesis, the violations follow a binomial distribution

NX

n=1

In(↵) ⇠ Bin(N,↵) (17)

To evaluate the two hypotheses, Christo↵ersen suggests the conditional coverage (CC) test, which
takes the independence (IND) hypothesis and the unconditional coverage (UC) hypothesis into
account. With this, Christo↵ersen suggests that INn=1(↵) is modeled by a Markov Chain with two
states (violation and no violation) and transition matrix

⇧ =

✓
⇡00 ⇡01

⇡10 ⇡11

◆
(18)

where ⇡ij = P (In(↵) = j |In�1(↵) = i). By modelling the violations as such, for some confidence
level ↵, the probability of a violation in the current period depends on the existence of a violation
in the previous period. The null hypothesis is thus formulated as follows:

10
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H0 : ⇧ = ⇧↵ =

✓
1� ↵ ↵

1� ↵ ↵

◆
(19)

Moreover, due to its construction, the probability of a violation at time t is independent from the
state in t. We denote the maximum likelihood estimator of ⇧ under the alternative hypothesis (i.e.
that ⇧ 6= ⇧↵) as

b⇧ =

✓
⇡̂00 ⇡̂01

⇡̂10 ⇡̂11

◆
(20)

and the number of violations in the violation sequence as

V =
NX

n=1

In(L̂n,↵ < Ln). (21)

Christo↵ersen then shows that under H0 the likelihood ratio statistic LR is defined as

LR = �2 ln


(1� ↵)N�V

· ↵
V

(1� ⇡̂01)n00 ⇡̂
n01
01 · (1� ⇡̂11)n10 ⇡̂

n11
11

�
(22)

where nij is the number of occurrences when It(↵) = j and It�1(↵) = i, is asymptotically �
2(2)-

distributed, allowing for acceptance of the null hypothesis if the generated p-value is � 0.05 [HT].

2.3 Neural Networks

In general, neural networks work similar to a brain with neurons that are activated, deactivated,
and connected to one another with synapses. Neural networks are constructed using an input layer,
hidden layer(s), and an output layer. Each layer consists of neurons that communicate with one
another in order to transport information from the input layer to the output layer, letting the infor-
mation pass through the neurons in the hidden layers, in which they are transformed according to
predetermined functions. What information that should be passed from a neuron in one layer to a
neuron in the next layer is decided by the network’s vector of weights w, which thus determine the
strength of the influence between the interconnected neurons. The main idea of neural networks is
to function as a ”black-box” model which can identify nonlinear relationships between variables.

We first consider a standard ”vanilla” neural network, i.e., a fully connected feed-forward neural
network with one hidden layer containingM1 neurons. The input of observations xi for i = 1, 2, ..., n
is transformed into inputs aj for i = 1, 2, ...,M1 which are then fed to the hidden layer in which
an activation function � is applied resulting in the outputs yk for k � 1. We begin by defining aj

more precisely, letting the superscript (1) represent the hidden layer.

a
(1)
j =

nX

i=1

w
(1)
ji xi + w

(1)
j,0 (23)

where wj,0 is a bias weight influencing aj . This j :th input aj , with j spanning over all nodes in the
given layer, is transformed using an activation function � to get Zj ; since the activation function
may be di↵erent between layers, we suppress its index, but note that the same activation function
is applied to all units within the same layer.

11
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Figure 2: A neural network with one hidden layer.

Z
(1)
j = �(a(1)j ) = �

 
nX

i=1

w
(1)
ji xi + w

(1)
j,0

!
(24)

These are the hidden units in the neural network. In turn, the procedure of producing the k :th
output ŷk from the hidden units is done in the output layer (2)

ŷk = �

0

@
M1X

j=1

w
(2)
kj Z

(1)
j + w

(2)
k,0

1

A = �

0

@
M1X

j=1

w
(2)
kj �

 
nX

i=1

w
(1)
ji xi + w

(1)
j,0

!
+ w

(2)
k,0

1

A (25)

With M1,M2,M3...,ML representing the number of neurons in layer Ml. As mentioned before, this
is for the case with one hidden layer and its architecture is shown in figure 2 below.

Expanding the network’s architecture to multiple hidden layers, i.e., a deep neural network, the
transition from layer m� 1 to layer m is then given by

Z
(m)
j = �

0

@
M(m�1)X

i=1

w
(m)
ji Z

(m�1)
i + w

m
j,0

1

A (26)

with m being the current hidden layer.

Let L(w) denote some convex loss function that includes the parameters of the network, e.g., mean
squared error defined as

12
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L(w) =
1

2

NX

n=1

(ŷn � yn)
2 (27)

With ŷn being defined by 25 and N being the total number of inputs x, equation 27 thus contains
all parameters of the network. In order to optimize the network, the aim is to find w

⇤ such that
rL(w⇤) = 0. This is done by choosing a starting weight w0 and iteratively updating it in order to
minimize the loss function. The updates for the ⌧ :th iteration are defined as

w
(⌧+1) = w

(⌧) +�w
(⌧)

with �w
(⌧) = �⇣rL(w(⌧))

(28)

Where ⇣ > 0 is defined as the learning rate of the network. This process is called gradient descent.
This methodology is quite slow as it involves evaluating rL(w) as defined in equation 27 for all
n = 1, .., N . Nevertheless, the process of updating the weights w is done in two steps; evaluating
rL(w) and updating the weights according to rL(w). In order to evaluate this, the chain rule
allows for redefining rL(w) as follows

@Ln

@w
(m)
ji

=
@Ln

@a
(m)
j

@a
(m)
j

@w
(m)
ji

where
@a

(m)
j

@w
(m)
ji

= Z
(m�1)
j

!
@Ln

@a
(m)
j

Z
(m�1)
j =: �jZ

(m�1)
j

(29)

where the earlier expressions for input aj and hidden units Zj have been used. This implies that

it is enough to calculate �j = @Ln/@a
(m)
j in order to evaluate rLn(w). Starting at the output of

a neural network with L layers, the output ŷnj can be thought of conceptually as the input to the

(L+ 1):th layer, a(L+1)
j . Using the loss function L(w) as defined in equation 27, one thus has

@Lk

@a
(L+1)
j

=
@

@a
L+1
j

✓
1

2
(ŷnj � ynj)

2

◆

=
@

@a
L+1
j

✓
1

2
(a(L+1)

j � ynj)
2

◆

= a
L+1
j � ynj

= ŷnj � ynj

(30)

For computation of �j for units inside the network, the chain rule applies as well

�
(m)
j =

@Ln

@a
(m)
j

=

Mm+1X

s=1

@Ln

@a
(m+1)
s

@a
(m+1)
s

@a
(m)
j

(31)

Through equation 31 and by Z
(m)
j = �(a(m)

j ), the following expression for �(m)
j is found
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@a
(m+1)
s

@a
(m)
j

=
@

@a
(m)
j

MmX

j=1

w
(m+1)
sj �(a(m)

j ) = �
0(a(m)

j )w(m+1)
sj

@Ln

@a
(m+1)
s

= �
(m+1)
s

�
(m)
j = �

0(a(m)
j )

Mm+1X

s=1

w
(m+1)
sj �

(m+1)
s

(32)

The weights are then updated in accordance with equation 28 and 29 until the loss is as small as
possible. This process is called the back-propagation algorithm.

2.3.1 Activation Functions

Activation functions are used to teach neural networks about di↵erent patterns in the data. The
functions used determine what information is relayed from a neuron in one layer to a neuron in the
subsequent layer. The necessity of activation functions is plural and includes limiting the signals
between neurons to certain values and perhaps most importantly to capture nonlinear patterns in
the data. While there exist several di↵erent activation functions useful in di↵erent situations, the
following are featured in this thesis and will be detailed below.

Sigmoid: The sigmoid activation function as implemented in most machine learning packages is
defined as

S(x) =
1

1 + e�x
(33)

There are actually di↵erent types of sigmoid functions, which all share the properties of being
monotonic and having a bell-shaped first derivative. The function defined above is known as the
logistic function. The logistic function converges to 1 when x ! 1 and 0 when x ! �1 and is
thus often used to represent probabilities.

ReLU: Rectified linear unit or ReLU is an activation function defined as

R(x) = max(0, x) (34)

Thus, the function only returns that which is positive. It has as of late become one of the most
ubiquitous and powerful activation functions in deep neural networks [LRZ].

Tanh The hyperbolic tangent function or tanh is defined as

T (x) =
e
x
� e

�x

ex + e�x
(35)

Tanh is also a sigmoid function, and is in fact simply a shifted and scaled version of the logistic
function defined in (33), an important di↵erence being that tanh returns values between [�1, 1].
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Softmax The softmax activation function is defined as

sm(x)i =
e
xi

PK
j=1 e

xj

, for i = 1, ...,K and x = x1, ..., xK 2 RK (36)

The softmax function thus results in the input being mapped to a set of values each between 0 and
1, much like the logistic function, however here all components sum to 1 jointly rather than each
being a value which can be interpreted as a probability. The softmax function is thus appropriate
for the task of creating mixture density weights, since the mixture probabilities should sum to unity.

ELU The exponential linear unit (ELU ) activation function is defined by the following equations:

E(x) =

(
x, x > 0

e
x
� 1, x  0

(37)

This function thus returns values > �1, and for very negative values quickly approaches zero. If
one seeks to model e.g. portfolio variances, the function thus yields the desired behavior of being
nonnegative if the function is shifted upward by 1, while simultaneously not increasing exponentially
if the input is itself positive. In the figure below, the ELU activation function has thus been
increased by 1 to ensure positive values.

Figure 3: Di↵erent activation functions and their values for x 2 [�5, 5].

2.3.2 Optimizers

Traditional gradient descent is only one among a plethora of methods available for updating the
weights in a neural network. The method is advantageous in the sense that it is simple to implement
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and will return the global optimum if the objective function is convex. One important caveat is that
the method might converge to a local optimum and hence cease searching for the global optimum.
Moreover, for each iteration the computational complexity will be high, and for large data sets
potentially infeasible. This is due to the fact that all training data is used in each iteration; letting
the number of samples be denoted by N and the dimension of the data set be D, the computational
complexity will for each iteration be O(ND). The technique of Stochastic Gradient Descent was
developed to mitigate this issue, as well as the risk of getting stuck in a local minima [SCZZ].

Stochastic Gradient Descent: Here, one sample of a small batch of samples is randomly chosen
to update the gradient during each iteration, as opposed to computing the exact value of the gradient
using the entire data set. The new weights are thus calculated as in equation 28, the di↵erence
being that this is only done for one sample i rather than for the entire data set. In doing so,
the calculation cost is reduced significantly; since the number of samples here is equal to one the
computational complexity will be O(D). The direction of the gradient descent does not uniformly
converge in one direction as the normal gradient descent method due to only one sample being used
since this introduces additional noise. Furthermore, having one learning rate for all features (where
some might be very prevalent and others rarely so) is problematic, since ideally rarely occurring
features should have larger gradient updates and vice versa. One method that addresses this issue
is the ”adaptive gradient algorithm”, or Adagrad.

Adagrad: Adagrad aims to adapt the learning rate to the problem’s parameters by assigning a
low learning rate for frequently appearing parameters and a high learning rate for rarely appearing
ones. The update equations are in the Adagrad case:

rL(w(⌧+1)) =
@L(w(⌧))

@w
,

V
(⌧) =

vuut
⌧X

i=1

rL(wi)2 + ✏,

w
(⌧+1) = w

(⌧) +�w
(⌧)

with �w
(⌧) = �⇣

rL(w(⌧))

V ⌧

(38)

Here, V (⌧) is the accumulate historical gradient of parameter w at ⌧ , w⌧ is the value of w on iteration
⌧ , and " is set to a very small value to counteract division by zero. Consequently, the learning rate
is not held constant and is updated by investigating the historical gradients preceding the current
iteration. One problem is that the learning rate will converge toward zero if the training time is long.
The methods RMSProp and AdaDelta were developed to mitigate this issue. In these methods,
rather than accumulating all historical gradients, one instead investigates the gradients over a
shorter period and uses an exponential moving average to calculate the second-order cumulative
momentum like so:

V
(⌧) =

q
�V (⌧�1) + (1� �)(rL(w(⌧))2 (39)

Where � is some exponential decay parameter. The flexible learning rates from AdaGrad and
momentum-based methods like AdaDelta and RMSProp are combined in the relatively new (2015)
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optimizer ”adaptive moment estimation”, or Adam.

Adam: Adam stores exponentially decaying averages of past gradients g(⌧)

g
(⌧) = �1g

(⌧�1) + (1� �1)rL(w(⌧)),

V
(⌧) =

q
�2V

(⌧�1) + (1� �2)(g(⌧))2
(40)

With �1 and �2 being some exponential decay rates, resulting in the weight update equations

w
(⌧+1) = w

(⌧) +�w
⌧

with �w
(⌧) = g

(⌧)
� ⇣

p
1� �2

1� �1

g
(⌧)

V (⌧) + ✏

(41)

where ✏ is set to a very small value to ensure that there is no division by 0. In combining these
two approaches, one is left with an optimizer which is computationally e�cient and simultaneously
minimizes the need for prior learning rate tuning [K&L].

2.3.3 Batch Size and Epochs

The neural network does its training by splitting the input data into batches and letting this number
of samples propagate through the network. For a given training data set containing N samples and
a batch size denoted b, the network divides N into N/b batches of size b. For each batch, weight
updates are made and its result is shown in the value of the network’s loss function. When all
batches have been propagated through the network, the training has been performed over 1 epoch.
That is, the number of epochs is the number of times that all batches are propagated through
the network. Naturally, there are implications to choosing the batch size as it a↵ects the gradient
descent explained above. Typically, the choice of batch size introduces three types of gradient
descent: batch gradient descent (where b = N ), mini-batch gradient descent (where 1 < b < N)
and stochastic gradient descent (where b = 1). The figure below illustrates how each approach
behaves when trying to reach a global optimum for the gradient.

Figure 4: Illustration of gradient descent using di↵erent batch sizes.
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While having a smaller batch size might be beneficial in terms of computational time since the
weights are updated after each propagation, a smaller batch size might make the value of the gradient
less accurate. The figure below illustrates how the gradient fluctuates more for the stochastic
approach compared to the batch approach. As such, a mini batch gradient descent approach serves
as a trade-o↵ between the two.

2.3.4 Long Short-Term Memory Network

There are a plethora of di↵erent types of neural networks, each being more suitable depending on
the task at hand. For time series, the recurrent neural network (RNN) is commonly used as it
includes a temporal component and is thus able to capture dynamic and time-dependent behaviors
in the data. A certain type of RNN is the Long Short Term Memory-Neural Network (LSTM-NN),
which, based on configuration of the model, can consolidate information from far in the past with
that which is more recent. A LSTM-NN includes at least one LSTM-cell which is constructed as
shown in figure 5.

Figure 5: Illustration of LSTM-cell architecture (image used with permission from creator Christopher Olah
[CO].

The LSTM-cell consists of a forget gate, an input gate, and an output gate. The main purpose of
the LSTM-cell is to remember information over time intervals while the gates control the informa-
tion that flows in and out of the cell. Essentially, the gates compute which information that is to
be remembered and which information that is to be forgotten. The information that is remembered
in the LSTM-cell is stored in its cell state Ct and is calculated in accordance with the input xt, the
computation in the forget gate ft as well as the previous output ht�1.

In the forget gate, the previous output ht�1 is concatenated with the new input xt. Using the
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sigmoid activation function, �, the output of this gate is between 0 and 1 and can be defined as
follows

ft = �(WfZt + bf ) (42)

Where Zt = [ht�1, xt], i.e. the concatenation of previous output and current input, Wf is a weight
matrix and bf is a bias vector. The value of ft is then point-wise multiplied with the previous
cell-state Ct�1. The aim is to reduce the elements of Ct�1 whose corresponding elements in ft are
close to zero, i.e., the cell state is updated and current state elements that carry lower weights are
reduced. Simply put, these elements are ”forgotten” and its e↵ect on the LSTM output is therefore
reduced.

The input gate works similarly to the forget gate using Zt, but produces the output et. As can
be seen in figure 5, the Zt is fed both through a sigmoid activation as well as a tanh activation.
The produced output of the tanh function are the candidate values, ct. Both et and ct hold a
corresponding weight matrix We, Wc and a bias vector be, bc.

et = �(WeZt + be)

ct = tanh(WcZt + bc)
(43)

The two outputs et and ct are then point-wise multiplied similarly as in the forget gate to reduce
elements that are to be ignored, or deemed not important enough, in ct. ct thus contains the
information that is to be updated in Ct�1 in order to obtain the current cell state Ct hence the
name candidate values. This is done through adding the output of the forget gate with the output
of the input gate. The full update to the current cell state can thus be portrayed as follows

Ct = et · ct + ft · Ct�1 (44)

The output gate produces the output ut which essentially is used to filter how the memory is
influencing the output of the cell. Similar to the forget and input gates, ut has its corresponding
weight matrix Wu and bias vector bu. Since the idea of the output gate is to reduce and enhance
the importance of the generated vectors, a sigmoid function is used to get a scalable value between
0 and 1.

ut = �(WuZt + bu) (45)

ut is then point wise multiplied with the current cell state Ct in equation 44 albeit scaled by a
tanh activation function to control the values generated by the addition in equation 44. This
multiplication thus generates the output of the LSTM cell denoted ht

ht = tanh(Ct) · ut (46)

As figure 5 shows, this value is passed on to the next layer in the network and generated further by
the layers corresponding activation function. The same value ht together with the cell state Ct is
passed on for the next iteration in the LSTM-cell, albeit now defined ht�1 and Ct�1. The addition of
LSTM-cells does not a↵ect how training of the network is done as the loss function is the same [AG].
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2 THEORETICAL FRAMEWORK

2.3.5 Mixture Density Network

As the name suggests, the Mixture Density Network (MDN) builds on the idea of parametric
mixture models and the neural network. The aim is to describe the conditional distribution of a
target variable, y, as a mixture of K distributions derived from the mean and variance of the input
x. The main objective here is thus to find the conditional distribution as described by the mixture
model

P (y |x) =
KX

k=1

⇡k(x)N (y
��µk(x),�

2
k(x)

�
(47)

Equation 47 is the case for a Gaussian mixture model, and consists of three main parameters µk(x),
�k(x) and ⇡k(x). Where µk(x) is the mean, �k(x) is the variance, and ⇡k(x) being the mixture
coe�cient. The mixture coe�cient can be seen as prior probabilities of the target y being generated
from the k:th component of the mixture model. In equation 47, N (y

��µk(x),�2
k(x)

�
is the estimated

conditional density of the target y. As Bishop [BC] describes it, the estimation of the density is
done via so-called kernel functions. For this project, the kernel function chosen is Gaussian as this
is commonly chosen for financial data [GHS]. These are of the form
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In the MDN, the parameters µk(x), �k(x) and ⇡k(x) are all conditioned on the input x. The aim
of the MDN is thus to model the parameters of all the component K densities by the outputs of a
neural network. In turn, the parameters must fulfill certain constraints in order to be considered
feasible. As such, the MDN layer is implemented at the output layer of the neural network where
each parameter is treated on its own using separate activation functions. E↵ectively, this means
that the MDN layer consists of three layers, one for each parameter. Thus, the input to each one of
these ”parameter layers”, derived as the output of the network prior to the MDN layer, are below
denoted as g⇡, g� and g

µ. Moreover, denoting the number of components of the target variable y
as L and the amount of mixture coe�cients as K, the total amount of outputs from the MDN layer
is (L+2)K. Regarding the mixture parameters ⇡k(x), as these are interpreted as probabilities, they
must sum to unity. In the network, this is obtained by using a softmax activation

⇡k =
exp(g⇡k )PK
j=1 exp(g

⇡
j )

(49)

where g⇡k is the k :th element of g⇡ with k being the corresponding component of the mixture model
and M being the size of g⇡. This ensures that the values ⇡k lie in the range [0,1] and sum to unity.

For the variances �k, these will have to be greater than 0 as they are represented as scale param-
eters. Considering the network output, in order to get the �k, the output is transformed using an
exponential function as such

�k = exp(g�k ) (50)

which only provides positive values. The µk in turn are represented directly by the network outputs
g
µ
kl, i.e. µkl = g

µ
kl, where l denotes the l :th element of gµk which has L components.
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2 THEORETICAL FRAMEWORK

Regarding training of the MDN, there is a need to define a suitable loss function which considers
the above mentioned parameters. This can be done using the negative log likelihood. Consider the
distribution in equation 47, the negative log-likelihood, i.e., the loss function, is given by

L(w) = �

NX
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ln
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where the expression for N (y
��µk(x),�2

k(x)
�
in 48 holds true. This loss function is minimized by

the back-propagation algorithm as defined under section 2.3. The corresponding derivatives, as
brought forward by Bishop [BC] are defined by:
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where �k is the corresponding posterior probability defined as

�k(y |x) =
⇡kNnkPK
l=1 ⇡lNnl

(53)

where Nnk as in equation 48 is defined as N (yn
��µk(xn),�2

k(xn)
�
.

Recurrent neural networks can be used e↵ectively in unison with MDNs, allowing for a distribution
conditioned on not only the current input but on a complete input sequence, enabling a more
reasonable model fit with regard to the past history [MS]. LSTMs specifically have been applied
successfully with MDNs by Graves [AG] and was additionally the most successful model in VaR
estimation by Arimond et al. [ABHKW]. A rough schematic for the architecture in this thesis is
presented in section 3.3.1.
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3 Method

3.1 Outline

The theory outlined above will be used in unison for the ultimate goal of generating VaR predictions.
Neural networks as such are used to capture the nonlinear dynamics of the data. Ideally, the network
should consider and foresee not only current trends, but also particularly idiosyncratic events by
recalling patterns that preceded these in the past. Such events are of course precisely those which
are of greatest interest when discussing tail risk, i.e., the risk of extremely rare loss inducing events in
the ”tail” of the loss distribution. For this purpose, LSTM-layers are used in the network, owing to
their penchant for handling time series data. Monte Carlo simulation of future returns will be used
to derive VaR predictions, and the assumed distribution is a Gaussian mixture model. To create
the mixture, a mixture density output layer is placed at the end of the network to generate the
mixture probabilities ⇡̂k and the Gaussian parameters {µ̂k, �̂k} for k = 2 regimes. This method will
finally be compared with the most often used methods of predicting VaR, the historical simulation
and mean-variance methods. The comparison will evaluate not only how often the VaR prediction
results in an underestimation of the loss, referred to as a ”breach”, but to what extent the MDN can
be used as a VaR model. The theory has been presented above, but the thesis specific considerations
are detailed below. The following schematic is presented to briefly summarize the procedure:

1. Data collection and pre-processing.

2. Measure VaR using ”classic” methods, i.e. mean-variance approach and historical sim-
ulation.

3. Construct LSTM-MDN to optimize �k, µk, and �k for k = {1, 2} regimes by maximizing
the likelihood of the posterior distribution.

(a) Construct optimal loss function, potentially through regularization techniques

(b) Choose functioning hyperparameter architecture

(c) Potentially include early stopping, vary number of training epochs and further hyperpa-
rameter tuning.

4. Compare VaR breaches/nominal exceedances between models

3.2 Methodology

3.2.1 Data collection

The data was retrieved through GoogleFinance. Specifically, the data consists of the adjusted
closing price for each day on a set of publicly traded stocks within the S&P5004 ranging from the
period of 2000-01-04 to 2020-12-30. 42 stocks were chosen randomly from a set guaranteeing values
for essentially each day in the desired time period, barring a small amount of missing inputs. The
number of stocks chosen was arbitrary, yet large enough to ensure a sizable data set.

4One of the most common stock market indices; measures stock performance of 500 large companies listed on
stock exchanges in the United States.
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3.2.2 Pre-processing

The data was first checked for NAs, i.e., empty values for any of the stocks on any given day in
the data set, with no stock missing more than 0.3 % of its observations. Rather than remove the
a↵ected days, these values were imputed with the value for the previous day, which facilitated the
next step.

The data was then converted from daily adjusted closing prices to daily returns, Ri
t with i denoting

the stock and t denoting the day, following the procedure and motivation outlined in section 2.1.1.
As such, the first observation from each stock’s time series disappeared. Thus, the data ultimately
used had the following structure:

2000-01-04
...

2020-12-30

0

B@
R0

1
. . . R0

42

...
. . .

...
R

1
5284 . . . R

42
5284

1

CA (54)

When using neural networks, it is often imperative to scale the data in order to speed up the learn-
ing process and achieve faster convergence. This is usually done by scaling the data to have a mean
close to zero [YL]. This step is most critical when dealing with tasks containing multiple features of
di↵erent scales, e.g., predicting how many children a person will have (usually in the range of 0-5)
given a person’s annual income (tens of thousands of dollars), height (in the approximate range
of 150-200 cm) and years of post-secondary education (usually between 0-6). Given the fact that
returns are already adequately centered around a mean of zero, the data at hand is essentially
directly compatible with a neural network [FD], hence why no further scaling was necessitated. To
note is also that no explicit variance/covariance relationship is defined as it is, if applicable, trained
endogenously in the network [HPW].

Due to the mechanics of LSTM-networks, the importance of specifying an optimal lookback period,
denoted d, is reduced as the network o↵ers long and short term memory. Still, the LSTM-network
does require input data to be sequential. As such, for the neural network model, the inputs were
set to a size of 20, meaning that any given prediction used the past 20 days of data. The function
f is a linear combination of the n portfolio stocks, which for simplicity was chosen as an equally
weighted long portfolio, i.e.

f(Rt) =
1

n

nX

i=1

R
i
t (55)

Therefore, for any given day t, the input had to be configured such that xt consisted of the returns
for each of the n = 42 stocks for the previous 20 days, i.e. xt = [Rt�20, ...,Rt]T , where the
superscript T denotes transposition. The target variable yt was configured as the portfolio return
for day t + 1, i.e. yt = f(xt+1) = f(Rt+1). In words, this implies that the model is trained to
predict the portfolio return on day t+1 given the stock returns for days [t� d, t]. With d = 20, the
input and output data for any given day t thus looked like

xt =

0

B@
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...
Rt

1

CA =

0

B@
R

1
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3.2.3 Measuring VaR classically

To benchmark the model against prevailing methods, the VaR was calculated through the mean-
variance and historical simulation approaches (see section 2.2.1). After some experimentation,
it was determined that these methods should use a lookback period of d = 60 days in order to
attain su�ciently good VaR estimations. For both the mean-variance and historical simulation
approaches the Numpy package was used and implemented in Python. In this thesis, the imple-
mented mean-variance method required the returns over the period of interest for the portfolio,
[f(R�d), f(R�d+1), ..., f(R0)]T (where superscript T indicates transposition) rather than the re-
turns for the individual assets. As such, a standard deviation � was computed instead of a covariance
matrix ⌃. Using a singular portfolio variance was considered necessary to maintain comparability
with the neural network approach, which is only configured to predict portfolio returns.

Thus, in the benchmark models, VaR was calculated based on a prediction of the portfolio return
VT = f(RT ) for a time T in the future, given a certain amount of days of prior return data
[RT�d,RT�d+1, ...,RT�1]T, for a pre-determined number of days d. In this thesis, the value d =
60 was chosen after some experimentation when using the benchmark models and predicting VaR
values T = 1 day in the future. Again, each Rt consists of the returns for the n assets on day
t, i.e. Rt = [R1

t , ..., R
n
t ]. VaR is thus calculated for day T = 1 through the historical and mean

variance approach using the input [R�59,R�58, ...,R0]T. For day T = 2, the inputs’ temporal index
is incremented by 1, as the return for day T = 1 has been ”observed” and can be used for the VaR
estimate on day T = 2.

3.2.4 Neural network development

Implementation To construct the neural network, Keras [Keras] was used, which serves as an
interface for the TensorFlow library. TensorFlow was developed by Google and is both a free
and open-source library for machine learning. Keras o↵ers both ordinary neural network layers and
LSTM-layers, in addition to a multitude of di↵erent machine learning methods. For the MDN-layer,
an open-source Python package called Keras Mixture Density Network Layer was used, available
online and developed by Professor Charles Martin of the Australian National University [CM].

Loss function An example of a loss function is given in equation (27), and the mean squared
error is a reasonable metric one seeks to minimize in typical neural network implementations. In
this thesis, however, rather than produce point forecasts, the objective is to maximize the likelihood
of the observed values being generated from the estimated distribution. As such, rather than, e.g.,
mean squared error, the loss function for this thesis needed to (minimize) maximize the (negative)
log-likelihood; the exact loss function is described in equation (51).

In line with the findings of Arimond et al., the loss function as such tended to estimate the mixture
density probabilities ⇡k in a non-desirable way. Specfically, one ⇡k invariably converged to 0 while
the other converged to 1, e↵ectively reducing the parameterization to one distribution. To mitigate
this issue, inspired by Arimond et al., a regularization term was added which adds a penalty to
the loss function if one-regime dominant probabilities occur. Specifically, the penalty term W was
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defined as:

W =
KX
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2 (57)

While this thesis assumes K = 2 regimes, the penalty term defined above is equally functional for
balancing K > 2 regimes. And the loss function L defined in equation (51) is instead replaced by
LW defined as

LW = (1� �W ) · L (58)

where the term 0 < � < 1 serves as a scaling factor, allowing for calibration of the penalty term, with
lower values relaxing the incentive of balancing of regime probabilities and higher values increasing
it. Recalling that the loss function is designed to be negative (in order for minimizing rather than
maximizing to be the objective, as is required in Keras), one sees that smaller values of W results in

a larger overall loss. The penalty term W =
PK

k=1 ⇡̄k(t)2 is minimized for ⇡k = 0.5 for k = {1, 2}.

To see this, first note that there are only two regimes and that for regime probabilities
PK

k=1 ⇡̄k = 1,
implying that ⇡̄1 = 1� ⇡̄2. W thus reduces to
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To maximize, we di↵erentiate W and set the derivative equal to zero, which yields

@W

@⇡̄1(t)
= �2 + 4⇡̄1(t) = 0 , ⇡̄1(t) = 1� ⇡̄2(t) = 0.5 (60)

Note that the second derivative is positive, thus ensuring that W is minimized:

@
2
W

@⇡̄1(t)2
= 4 < 0 (61)

The loss function is now formulated in such a way that the likelihood of the predicted distribution
generating the observations is maximized, and that the resulting regime probabilities are incen-
tivized to achieve ”realistic” or at least nonzero converging probabilities.

Hyperparameter architecture Before defining the chosen model architecture, the data was
chronologically split into a training, validation, and testing set consisting of 70, 15, and 15 percent
of the data, respectively (i.e. using 70 percent of the data for training the network, 15 percent for
testing and 15 percent for validation). That is, the training data consisted of data from 2000-01-04
to 2014-09-23 (3684 days), the validation data consisted of 2014-09-24 to 2017-11-08 (789 days), and
the test set consisted of data from 2017-11-09 to 2020-12-30 (790 days). This allows for the network
to adjust its weights in accordance to the training set during training, while manual adjustments to
the hyperparameters are done with the obtained training loss function value as well as the model’s
predictability and loss value on the validation set. The test set was left untouched and was used
to test the model performance after adjustment of hyperparameters stemming from validating the
model on the validation set.
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As the approach for choosing the optimal neural network architecture is not rigorously defined, the
process in this case largely relies on trial and error. Nevertheless, the general aim is to minimize
the loss function and maximize accuracy while reducing bias and overfitting. A common approach
to this is to use algorithms such as Grid Search where hyperparameters are iteratively chosen based
on a predefined metric that the network produces (e.g. its loss). However, for this thesis, the aim is
not only to minimize some metric but also to produce realistic regime probabilities, represented by
⇡k in the mixture model. Thus, as this objective can not be generalized into a specific metric, no
algorithm was used for defining the optimal network architecture. Instead, the approach relied on
extensive manual trial and error compared to an algorithm’s automatic approach. Nevertheless, the
hyperparameters that need to be adjusted in the neural network are the number of layers, number
of nodes in each layer, choice of activation function in each layer, initializers, batch size, learning
rate and number of epochs.

Layers A typical ANN has one input layer, one or more hidden layer(s), and one output layer.
The most common type of layer is the dense layer, which, as the name suggests, is fully connected to
neurons in another layer. Compared to the LSTM-layer, the dense layer is quite simple and provides
learning features for all combinations from the previous layer. On its own, it does not account for
temporal aspects and memory as the LSTM-layer. In this thesis, there indeed needs to exist one
input layer as well as one LSTM-layer as the temporal features of the time series are essentially the
only explanatory variables from which the network may perform inference on. The output layer is
in this context necessarily an MDN-layer, as the output is a conditional distribution rather than
a point estimate. Friedman et al state that choosing the number of hidden layers relies on the
analyst’s background knowledge coupled with experimentation, and that stacking of multiple layers
enables the network to construct deeper features from which the output can be based on [HTF].
Gu et al noted that sparser models with fewer layers outperformed their denser counterparts in the
context of financial forecasting, which was assumed to be the case due to the low signal to noise
ratio in financial data [GKX]. Inspired by this fact, an e↵ort was made to not complicate matters
unnecessarily with more layers, while simultaneously adhering to established research within the
field.

Nodes Friedman et al. state that in general, it is better to have too many nodes in a layer than
too few [HTF]. With too few neurons, one risks missing important nonlinear connections in the
data whereas the issue of having too many neurons can be overcome with various regularization
techniques. Boyd and Kaastra give numerous examples of potential rules of thumb that could
theoretically be used for choosing the number of neurons in the hidden layer, including (for a three-
layer network with n input neurons and m output neurons):

p
n ·m (Masters, 1993), 0.75 ·n (Baily

and Thompson, 1990), and between one half to three times n (Katz, 1992) [B&K]. In any case,
Friedman, Boyd & Kaastra and the vast majority of research ultimately refer to experimentation
within the context of the specific problem to be solved when determining the number of neurons
in hidden layers. As such, di↵erent numbers of neurons were tested until relatively encouraging
results were noticed, whereupon the encouraging set-up was varied locally to further optimize the
network structure.

Miscellaneous improvements One important aspect in formulating the architecture of the neu-
ral network is the usage of callbacks. A callback is a function that is applied at given stages in
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the training of the neural network [KCB]. In this thesis, the callbacks were used for three pur-
poses; automatic adjustment of learning rate, early stopping and model checkpoints. Firstly, for
the learning rate, the callback ReduceLRonPlateau monitors the loss function and automatically
reduces the learning rate by a factor of 0.1 if the loss has not improved over 15 epochs. In this
callback the factor of which the learning rate is to be reduced, the number of epochs before ad-
justment (i.e. patience) as well as the variable that is to be monitored can be manually adjusted.
Secondly, the callback EarlyStopping was used to introduce early stopping. This callback moni-
tors the validation loss and stops the training of the neural network if the validation loss has not
improved over 60 epochs. Similar to ReduceLRonPlateau, the variables in this callback can be
manually adjusted as well. Lastly, the callback ModelCheckpoint was used to save the best model
during training. When using early stopping with a patience � 1, there is a risk that the model will
become worse after each epoch due to suboptimal updates of the weights. Thus, it is important
that the model saved and used for prediction is the model that resulted in the best loss. In doing so,
when the validation loss value has been improved during training, the model weights for that epoch
are saved and later overwritten if the loss is improved during later stages in the training. When
the training is finished, the saved model, i.e., the best model, is then loaded and used for prediction.

Moreover, the model uses dropout layers that are put in between other layers of the model. Given
a set frequency in [0,1], the layer sets a fraction of the input units to 0 at each step during training
corresponding to this frequency. This means that some weights are excluded from updates while
training a network. As such, the dropout layers help prevent overfitting. Moreover, inputs not set
to 0 are scaled by 1

1�frequency in order to maintain that the sum over the inputs remains the same

[KDO]. In the model used for this thesis, each LSTM layer is followed by a dropout layer with a
frequency of 0.2, the default value in Keras dropout layers. To note is that other frequency levels
were tested but yielded worse results.

3.2.5 Evaluating the models

The purpose of VaR is to estimate what a portfolio could potentially lose at a certain confidence
level ↵. Again, a one week VaR↵ of, e.g., 0.07 means that the portfolio value could decline by 7
% or more in one week with probability ↵. The corresponding amount of capital could then be
invested in a risk-free asset (e.g. a government bond) to ensure that there is enough capital to
cover any outstanding debt should the portfolio result in the potential predicted loss. If the actual
loss instead exceeds the VaR estimate, a so-called ”breach” has occurred and the investor might
then have too little capital to cover the incurred loss. We thus to some extent compare models
by the amount of breaches that each model has. However, by the very construction of VaR, if the
confidence is specified to e.g. ↵ = 0.05, the model should breach 5 % of the time. To facilitate
fair comparison among models, one must therefore check that the ratio of breaches to predictions
is approximately 5 %. Given that this is the case, one should additionally consider the nominal
predictions important when comparing the models. Even if two models breach roughly 100 · ↵ %
of the time, one would prefer the model that generates VaR predictions closer to the true loss. If
one model gives a VaR estimate of 0.20 and another gives an estimate of 0.15 while the true loss is
0.10 (thus implying that neither model results in a breach), one would prefer the second model, as
one would need to invest less money in the risk-free asset and instead be free to make further risky
investments, while still being able to cover the loss of 0.10.
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We let I(A) denote the indicator function, i.e., a function which returns 1 if the event A occurs and
0 if not (see equation 14). The true loss is given by L while the predicted loss (VaR-estimate) be
given by L̂. The total number of predictions is given by N . With this notation, we introduce the
following metrics used to investigate superiority among VaR models:

Breach Ratio = 100 ·

PN
i=1 I(L̂i < Li)

N
(%) (62)

Again, if the VaR is specified at confidence level ↵ the breach ratio should be roughly equivalent to
↵.

Sum if breach =
NX

i=1

I(L̂i < Li)(Li � L̂i)

Here one yields the value of how much the model breaches nominally over the total amount of
predictions. For models with an equivalent breach ratio, the model with a lower Sum if breach is
preferred, as that would imply that this model is at least closer to the true value of the loss.

Sum if no breach =
NX

i=1

I(L < L̂i)(L̂i � Li)

Comparing Sum if no breach among models thus gives an indication of how close the VaR estimates
are to the true loss given that the models do not breach, which again is interesting to look at as
needing to invest less in the risk-free asset enables the investor to use this money elsewhere, or at
the very least maintain a higher liquidity.

For general purpose comparison, we additionally look at these metrics:

Avg. if breach = Sum if breach/N
Avg. if no breach = Sum if no breach/N

Max. VaR = max(L̂1, ..., L̂N )
Min. VaR = min(L̂1, ..., L̂N )

3.3 Developed models

For all models, a batch size of 32 was used. Each model was allowed to run for 500 epochs, but the
final number varied based on whether or not early stopping was activated. All models had their
weights randomly initialized and used the Adam optimizer. After training, the models were then
fit to use for VaR simulation in line with the Monte Carlo procedure defined in section 2.2.2 to be
compared with the established VaR measuring approaches.

3.3.1 Model 1 (non-regularized)

Model 1 was constructed as follows:

[LSTM-layer, 2 nodes, activation ReLU] - [Dropout layer with frequency 0.2]

[Dense layer, 12 nodes, activation ReLU] - [Dropout layer with frequency 0.2]

[MDN-output layer, activation softmax for ⇡k, and activation ELU plus one for �k].
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The architecture is visualized in figure 6. The model’s loss function is as given by equation 51, and is
as such not incentivized to approach mixture probabilities of 0.5. While model 1 showed encouraging
reactivity in predicting returns, the ⇡̂k’s were relatively static, with one regime being invariably
dominant. Model 2 was developed to generate more variability in the mixture probabilities.
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Figure 6: The architecture used in the neural network model.

3.3.2 Model 2 (regularized)

Model 2 thus used the same architecture as model 1 but with a loss function incorporating the
regularization term as proposed by Arimond et al., resulting in the loss function given by equations
57 and 58.

3.3.3 Model 3 (combined)

Model 3 used the same architecture as model 1 but the mixture probabilities generated by model
2 in order to capture the relative advantages of each model.
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4 Results

Model 1 is the model which had VaR breaches closest to 5 %, whereas Model 2 yields more realistic
mixture probabilities (⇡k). Both models su↵er from a tendency to overestimate the 95 %-VaR, but
exhibit qualities which in unison could work more e↵ectively to accomplish the task. Model 3 thus
uses the µ̂k’s and �̂k’s from model 1 and the mixture probabilities ⇡̂k from model 3. The tendency
to overestimate is prevalent irrespective of confidence level chosen, i.e., estimating the 10, 5, or 1 %
VaR results in the model generally overshooting its target. For this reason, focus was devoted to
only presenting the 5 % VaR, as the results were deemed illustrative of the model’s performance.

4.1 Model 1

In the figure below, 1-day 95 % VaR estimates are plotted for the thesis model(s) (”NNVaR X”) and
the chosen benchmark models, i.e. mean-variance (”ParVaR”) and historical simulation (”HSVaR”).
Note that only the (absolute value of) negative returns are shown as positive returns would imply
that any VaR estimate will not result in a breach, i.e., only days for which the portfolio generated
a loss are shown. The left y-axis shows the loss associated with the VaR estimate while the right
y-axis shows the number of breaches. The dashed lines with frequent plateaus are associated with
the breaches, and subsequently the higher up a line is, the more VaR breaches occurred.

Figure 7: 1-day 95 % VaR estimates for the neural network (1), parametric, and historical simulation
models computed over the test set.

30



4 RESULTS

What is immediately striking is the significantly fewer amount of breaches for the neural network
model, being almost half of the size of the benchmark models. However, the neural network con-
sistently ”overestimates” the loss which naturally results in fewer breaches, which for practical use
would entail putting away more cash than necessary to hedge for negative portfolio returns, result-
ing in less liquidity.

As could be inferred from figure 7, Model 1 achieves a much lower breach ratio than the benchmark
models, which, as mentioned, comes at a practical cost of worse liquidity. This is evident when
investigating the average VaR, as well as the Sum if No Breach which is significantly higher than
for the benchmark models. Consequently, the Sum if Breach is lower, as well as the Avg. if No
Breach.

In the next figure, the parameters of the mixture model are shown for each time t in the test set. ⇡1

is here thought of as the bear market and consequently ⇡2 is thought of as the bull market, as their
corresponding normal distribution parameters show the associated characteristics of such markets,
i.e. high (low) volatility and low (high) expected returns.

Figure 8: Estimated mixture parameters from the neural network model (1) based on the test set.

The bull market is clearly dominant as it is greater than 0.5 for each time t. The �̂k results reflect
the volatility associated with the bear market, being considerably larger than their counterpart, the
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bull market sigmas. Again one sees the regime characteristics in the sense that the bull market’s µ̂2

are consistently positive while the bear market’s µ̂1 are consistently negative. Moreover, the bull
market returns are significantly more volatile, as exhibited by the higher �̂1.

4.2 Model 2

In the second model, the loss function was configured with a regularization term, which induces the
model strive for more balanced mixture probabilities.

Figure 9: 1-day 95 % VaR estimates for the neural network (2), parametric, and historical simulation
models computed over the test set.

Model 2 also overestimates the portfolio loss, and to a more severe degree than model 1. Of course,
this results in even fewer breaches but again at the practical cost of poor liquidity.
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Figure 10: Estimated mixture parameters from the neural network model (2) based on the test set.

In model 2, the mixture probabilities are piecewise dominating, thus achieving the regime switching
capabilities desired. What is problematic is that one would assume that the market crash in the
first quarter of 2020 would be characterized as a bear market, yet the model classifies it as a bull
market. That is, for that period, the dominating ⇡̂2 has a corresponding low �̂k and high µ̂k which
intuitively seems wrong. However, one should note that during the market crash in the first quarter
of 2020, the associated �̂2 is increased and µ̂2 is decreased.
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4.3 Model 3

Model 3 uses the normal distribution parameters of model 1 and the mixture probabilities of model
2; the bear market parameters are here associated with the mixture probability dominating during
the Corona crash, in order to achieve the desired characteristics of the regimes.

Figure 11: 1-day 95 % VaR estimates for the neural network (3), parametric, and historical simulation
models computed over the test set.

Model 3 also exhibits overshooting, and to a somewhat larger degree than the previous models,
however its reactivity to large losses is encouraging.
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Figure 12: Estimated mixture parameters from the neural network model (3) based on the test set. These
are the ⇡̂k from model 2 (figure 10) and �̂k, µ̂k from model 1 (figure 8).

The manual configuration now results in the parameters exhibiting the desired regime characteris-
tics.
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Figure 13: Portfolio value path given a starting wealth of 1 currency unit for each regime and the true
returns. For the first panel, the colored areas correspond to the training, validation, and test sets respec-
tively.

In the two lower panels in the figure (13) above, the returns from each regime are aggregated
chronologically and multiplied by a starting wealth of 1 currency unit, thus showing the trajectory
of a portfolio undergoing only a bear or bull market, respectively. To exemplify: suppose days 1, 3,
and 5 were classified as a bear market and days 2, 4, and 6 were classified as a bull market; letting
the return for day t be denoted by Rt, the fictional portfolio value 1 is multiplied by 1+R1, 1+R3,

and 1+R5 for the bear market and 1+R2, 1+R4, and 1+R6 for the bull market. Since the days
labeled as bear and bull markets are possibly disjunct, the x-axis for those panels only shows the
total number of days in which either a bear or bull market reigned. The first panel shows the true
returns, with each return point being colored according to the dominating regime probability. The
aggregated bear and bull market returns show the desired characteristics of the regimes: the bear
market is volatile, however ultimately results in a positive return on the portfolio. The bull market
regime exhibits a steady increase and results in a quadrupling of the initial investment. Note that
this graph aims to show the classification behaviour of the model, not its predictive ability. Hence,
the results in the first panel from the training (white area) and validation set (light grey area) are
shown alongside the results from the test set (dark grey area). Nevertheless, in the first panel,
one sees the bear market being active where one would expect, most notably in the period of the
financial crisis in 2009 and the tumultuous COVID-19 induced market crash of 2020.
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4.3.1 Model 3 Shifted

Finally, we present model 3 shifted downward by the term 1.50⇥[Avg. if No Breach]. The Avg. if
No Breach is calculated on the validation set, thus implying that the presented results are still out
of sample in order to preserve generalizability of the model as such. The reasoning behind adjusting
it for this di↵erence is that the model consistently overestimates the predicted loss, and the factor
1.50 was acquired through seeking a breach ratio of roughly 5 % on the validation set.

Figure 14: 1-day 95 % VaR estimates for the shifted model, parametric, and historical simulation models
computed over the test set

With these adjustments, the VaR breaches are comparable to those of the historical simulation
approach, while still showing significant reactivity to sudden changes in the portfolio.

Below is shown the VaR estimation over the test set for the three approaches, with the higher
estimation being clearly visible for each day. The lines are the cumulative sum of the VaR estimation
for each model, i.e., the sum of all VaR estimations over time on the test set. This is of interest as
it shows if the usage of the NNVaR model as a risk model would result in the investor being able to
take on more risk due to the precision in the VaR estimates. Specifically, between two equivalently
”valid” VaR models (in the sense that both models achieve the theoretically assumed ↵N breaches,
with su�cient independence among occurrences), the model that achieves a lower cumulative sum
is superior. This is a consequence of less capital needed to be invested in the risk-free asset, enabling
additional risky ventures or higher liquidity.
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Figure 15: Cumulative 1-day 95 % VaR estimates for the shifted model, parametric, and historical simulation
models computed over the test set.

In the shifted model, the cumulative sum is thus comparable to the benchmark models.

In table 1 below, important measures are presented for each model. Each measure is explained in
detail in section 3.2.5.
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Measure HSVaR ParVaR NNVaR 1 NNVaR 2 NNVaR 3 NNVaR 3 Shifted

Breach ratio 5.89% 6.99% 3.56% 1.92% 0.55% 5.75%
Sum if breach 3.03e-01 3.88e-01 2.90e-01 1.55e-01 1.50e-02 2.00e-01
Sum if no breach 3.13e00 2.98e00 3.13e00 4.98e00 7.06e00 3.13e00
Avg. if no breach 4.29e-03 4.08e-03 4.28e-03 6.82e-03 9.67e-03 4.29e-03
Avg. if breach 4.15e-04 5.31e-04 3.98e-04 2.13e-04 2.00e-05 2.74e-04
Avg. VaR 1.63e-02 1.56e-02 1.59e-02 2.18e-02 2.85e-02 1.62e-02
Max. VaR 6.03e-02 4.78e-02 3.16e-02 4.05e-02 7.37e-02 6.14e-02
Min. VaR 3.60e-03 5.51e-03 9.28e-03 1.44e-02 1.33e-02 9.75e-04

Table 1: Statistics for the models over the test set.

We see from table 1 that the breach ratios for the nonshifted neural network models are alarmingly
lower than the expected 100↵ %, which from the corresponding figures (7, 9, 11) is evident as the
estimations lie significantly higher than the observed losses. While Sum if breach, Sum if no breach,
and Avg. VaR are relatively comparable, figure 7 reveals that the early 2020 period may be the
reason that these balance out, despite the much lower breach ratio, which can be attributed to the
more stable periods in which NNVaR 1 overshoots.

In table 2 below, results from the di↵erent VaR model validation tests are shown for each model. As
explained in section 2.2.3, these tests aim to measure the VaR models’ validity in terms of number
of breaches and independence in their occurrence. Specifically, recall that the UC-test investigates if
the realized breaches are approximately proportional to the confidence level ↵ = 0.05; the IND-test
investigates the independence of breach occurrences and the CC-test serves as an amalgam of the
two. Moreover, one seeks to discard the alternative hypothesis for each of the tests, thus meaning
that the null hypothesis is accepted for p-values exceeding 0.05.

Test HSVaR ParVaR NNVaR 1 NNVaR 2 NNVaR 3 NNVaR 3 Shifted

UC 5.67e-01 7.05e-02 7.38e-02 5.43e-06 1.70e-12 1.76e-01
IND 2.14e-11 4.36e-13 2.00e-05 1.77e-03 8.01e-01 9.00e-06
CC 1.56e-10 7.84e-13 3.00e-05 2.44e-07 1.48e-11 2.00e-05

Table 2: P-values from the conditional coverage test over the test set

As can be seen in table 2 the final model NNVaR 3 Shifted performs similarly to the benchmarked
models HSVaR and ParVaR. Although no model passes the CC-test, which might be due to the
clustering of breaches around the Corona crisis in the beginning of 2020, what is important is that
the developed NNVaR model displays similar or even better validity than the established models.
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5 Discussion

The following section is divided into three subsections discussing first the results and their impli-
cations, followed by a discussion on the practicality of applying the method outlined in this thesis
and finally a problematization of the usage of neural networks for financial purposes.

5.1 Model results

5.1.1 Reactivity

Looking at the model predictions above, the constructed neural network model is quite reactive in
comparison to the established models (historical simulation and the parametric model). Consider-
ing the construction of the neural network, this is not substantially surprising. While all models
uses historical data to produce the distributions from which the quantiles are calculated, the neural
network model constructs its distributions with the aim of matching the portfolio return for the
next day. Relating this to the parametric model, the resulting distribution is produced through
fitting a Gaussian distribution on historic returns within a certain window. This window is later
moved forward in order to include the same amount of data points when the distribution for the
next day is determined. Intuitively, this results in a ”lag” in reactivity for the parametric model
since a short sequence of, for example, large negative returns in a recession period will not influence
the fitted distribution until the period has passed. Looking at figure 7 one can see what is explained
above. During the period of the Corona crisis between March and May of 2020, the parametric
model (ParVaR) lags behind and predicts it largest losses during May while the largest losses of
the crisis had already occurred during March. This behaviour is similar throughout the test set
and as a result, the parametric model sees an increase in breaches during periods when volatility
is high. A similar behaviour can be seen in the historical simulation model. The historical model
is however quicker to react to the Corona crisis. Although the two models follow a similar way of
construction, the historical model uses the empirical distribution over historical returns to deter-
mine its quantile. As a result of this, the tail values are directly impacted by the introduction of
large historical portfolio losses and its capability to be more reactive is therefore greater than that
of the parametric model.

Furthermore, due to this ”lagged” behaviour of the two established VaR-models, they have the
capability of being beneficial during longer periods of low volatility. Looking at the period of May
to September of 2018, the model’s VaR-predictions are close to the true loss of the portfolio as a
result of this. Nevertheless, this type of ”lagged” behaviour is not visible for the neural network
model since it does not adapt its produced distributions solely on the historical returns but rather
to better fit the predicted portfolio return. As a result of this, the produced distribution can be
quite di↵erent from one day to another. Looking at the parameters in figure 8 one can see that
the µ̂k and �̂k varies quite frequently throughout the test set. Relating this to the parametric
model, its parameters would not fluctuate as much and the derivative throughout its parameter
graphs would be more consistent. As explained above, one can see in figure 8 that during the pe-
riods of which the estimated volatility, �̂k, is low, the parametric and historical models perform well.
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5.1.2 Dominating regimes

When the model was not regularized, the MDN-model invariably let one regime become dominant
for all t, an undesirable result considering the objective of creating a reactive risk model sensitive to
the current market regime. While the model’s prediction for any given day is based on the current
input, it is possible that the resulting weights from the training have been configured in a way that
gives the most appropriate mixture model for the entire data set. Over the past twenty or so years,
despite occasional economic crises the market has undoubtedly been bullish, a fact visible in the
last plot in figure 13. As such, with no regularization term, the model may strive for as general
a mixture model as possible, which for the training data would be an overwhelmingly bullish market.

In Bishop’s original MDN-paper the idea of regularization terms in the error function was put forth
as a way to increase generalization of results. When applying the term as suggested in Arimond
et al the problem of dominating regimes was alleviated, giving time varying dominance as seen in
figure 10. When incorporating the regularization term unscaled, the mixture probabilities centered
around 0.5 each, whereas scaling the term with a factor � = 0.1 (e↵ectively relaxing the balancing
incentive) yielded the ⇡̂k’s presented in figure 10. Still, in both cases, one would preferably like to
see even larger discrepancies between the probabilities, as certain periods are undoubtedly bull or
bear markets. More problematic however is the fact that for the regularized model (2), the µ̂k’s and
�̂k’s do not correspond with the prior assumptions on when the bull or bear market would reign.
For example, during the Corona crash one would expect the high volatility regime (bear) to be
dominant, yet as seen in figure 10 the higher return/lower volatility regime’s probability is higher.
That fact inspired the combined model (3; see next section), but in any case when aggregating the
returns as shown in figure 13 one sees that expected bear markets are at least codified the same,
e.g. early 2000s IT bubble, the 2008 financial crisis and the Corona crash of early 2020. Moreover,
the true returns of these periods reflect the expected characteristics, i.e. the pure bull market graph
is steadily increasing while the pure bear market graph is significantly more jagged.

The results are thus somewhat encouraging, potentially motivating more refined regime classification
models not necessarily through MDNs. Hidden Markov Models are commonly used for regime
classification as well as parameterization of regime distributions, but for pure regime classification
in a machine learning framework, a suggestion would be to include more features and try methods
other than neural networks with more lenient data requirements, such as random forests or gradient
boosting techniques.

5.1.3 The combined model

The reason for the logical mismatch in output parameters from model 2 was examined but no
real conclusions could be drawn. Nevertheless, as the probabilities ⇡̂k showed the sought after
regime switching characteristic, it was decided to extract the ⇡̂k:s from model 2 and replace the
non-switching ⇡̂k:s in model 1. Thus, model 2 was used more as a classifying model rather than a
loss prediction model. With this interpretation of model 2, it was deemed relevant to extract the ⇡̂k

despite the fact that the ⇡̂k were generated in unison with the remainder of the mixture parameters
since they showed a promising classifying behaviour of the regimes. Moreover, the µ̂k and �̂k in
figure 10 and figure 8 are very similar, which in turn ameliorates the downfalls of combining the
two models in this regard. It should also be noted that the aim of this thesis is to examine the
usage of MDNs for VaR-estimation, not explicitly formulating a ready-to-use model, thus combin-
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ing the outputs of the two models is of interest as it aids in examining the potential of the approach.

The results, as shown in figure 11 demonstrate an increased reactive behaviour of the model. Due
to the now regime switching characteristic of the model, the part of the mixture that has higher
volatility and lower estimated return has a higher probability of being sampled from during periods
of higher loss. As such, the corresponding VaR-estimate is increased during these periods which
explains the more jagged behaviour of the neural network model. Ignoring the model’s fairly con-
stant overshooting of its predictions, the graph portrays a behaviour that is similar to that of the
true portfolio losses. As such, the idea of using a separate model to classify regimes and combining
it with a model that produces the other relevant parameters of the mixture is of interest. Arimond
et al use a Hidden Markov model to estimate values for the mixture parameters while letting a
neural network output the ⇡̂k. The idea here is similar, letting one network produce the ⇡̂k and
another produce the µ̂k and �̂k, however it should be investigated whether a neural network is best
for classifying the regimes. For classification problems, there is a plethora of methods that could
be used, often with more lenient data requirements and faster implementation. Since such methods
would enable faster computation, one could additionally explore more features than returns, and the
existence of more classes. In line with this, there are several unsupervised learning methods which
may be explored, enabling the analyst to eschew preconceived notions of bear and bull markets, to
identify more current trends which could potentially be more relevant for risk management.

Nevertheless, for the combined model used in this thesis, the issue of overestimating tail risk and
consequently overshooting the VaR-predictions is still prevalent. While the jagged behaviour (as
explained earlier) is necessary to emulate the true portfolio losses, it results in overestimating the
VaR almost throughout the test set. As such, the number of breaches as shown in figure 11 is very
low. However, due to this overestimation during ”normal” times (e.g. the period between approx.
January 2018 and January 2020) the model is able to capture the large portfolio losses during the
Corona crisis where one could argue that an overestimation of losses was necessary. One can also
see in the figure that, as a result of this, the neural network model su↵ers fewer breaches during
the crisis as compared to the parametric and historical models. On the other hand, one can also
argue that this is not beneficial for the purpose of the model. That is, a VaR-model at confidence
level 5% should breach at approximately 5 % of the time.

5.1.4 Overestimation

The tendency to consistently overestimate the portfolio loss was a common theme among the mod-
els, both for low and high portfolio losses. There are many possible reasons for why this could
be occurring. First, it should be said that the problem was persistent and seemingly una↵ected
by changes in the model architecture, including di↵erent activation functions, dropout frequencies,
and number of layers, as well as more general data scientific configurations, such as di↵erent sizes
of the training data, di↵erent seedings for the random number generator, and even choice of data
set. This implies that the overestimation problem stems from the model choice rather than any
particular configuration of the model. A potential reason could again be the objective of the model
to reasonably fit a mixture distribution to the entire data set, and as such aims to ”play it safe”
by constructing distributions which include the outlier returns. That is, that the model might be
biased towards the outlier returns resulting in its weights being determined so as to reduce the
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outliers’ impact on the loss. In other words, the model seeks an average between the error intro-
duced by the outliers and the error introduced by the more ”normal” returns. As mentioned above,
multiple attempts were made to reduce the overshooting, including removing the bias vector from
the layers and scaling the inputs via a min-max scaler, yet neither proved beneficial for the model.
It might seem that the problem could be resolved by scaling as it would result in the model not
being biased towards the large absolute portfolio returns, however the outliers only occur during a
small percentage of the entire time series. As such, scaling the variable was proven to not introduce
any significant results.

A second theory to why the model overestimates might be due to the usage of the ReLU activation
function in the LSTM-layer. As described in section 2.3.4, the tanh activation is typically used in
LSTM-layers to scale and control the values when determining the cell state and candidate values;
with the data and loss function used in this thesis, however, tanh produced strange and unfit VaR
estimations, hence why after some experimentation the ReLU function was chosen instead. As
such, using a ReLU activation function for this, the cell state values are not scaled in the same
way and is only ”controlled” by the internal sigmoid activations. This essentially allows for the
cell state Ct to become any number larger than 0. It is thus possible that when the LSTM-layer
receives input in the form of an outlier, its memory is greatly a↵ected by this and, due to the
recurrent nature of the LSTM, a↵ects the predictions being made later on. Similarly to what was
explained above, the model may become biased toward the outlier returns. Nevertheless, while this
thesis found no definitive explanation architecturally for this phenomenon, bespoke alterations to
the activation functions could be of interest in future research. Alterations that preferably should
combat the issue of overshooting while still maintaining the beneficial regime probabilities that the
ReLU activation function helped produce.

Another issue could be that clear bear- and bull market distinctions are noticed on di↵erent time
intervals from those which are used for VaR predictions. What is meant by this is that what is
referred to as bull and bear regimes in e.g. a media context is usually not realized or noticeable on
a weekly or even monthly basis, meaning that mixture distributions over short time periods may
not be appropriate. Even though the bear and bull regimes in the context of this thesis are meant
to accomodate VaR prediction over short periods, the multimodality needed for mixture densities
to be appropriate are simply not reflected in historical returns when only looking at short time
periods. As seen in figure 16 below, the normal assumption is not truly contested until at least one
year returns are investigated and for a two regime case seems most appropriate the five-year return
case. Even for the case of alternatingly dominant ⇡̂k, the fact that the expected returns for either
regime are extremely close implies that the mixture distribution may collapse into a unimodal set
of returns, albeit with di↵erent volatilities. When deriving the quantile from the simulation, the
bearish volatility will thus most likely be the determining factor, given relative balance between the
mixture probabilities.
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Figure 16: Histogram of rolling returns for one day, one month, one year, three years, five years and ten
years of the S&P 500 index over the period 1970-2020. In blue are the true returns and the red line is the
fitted normal distribution.

5.1.5 The shifted model

As explained in section 4.3.1, the combined model was shifted downward using a variable derived
from the validation set in order to deal with the overestimation. The results in figure 14 show a
model which follows the path of the true portfolio losses quite well and breaches approximately the
same amount as the historical simulation model. Looking at the statistics presented in table 1, the
breach ratio for the shifted model is close to 5 %, which is close to what Kupiec suggests should hold
true for a VaR model. Looking at the test results presented in table 2, the shifted neural network
model performs similarly to the parametric and historical models. The breaches are considered
unconditional yet not independent over the test set. This is explained by the clustering of breaches
over the Corona crisis period resulting in the rejection of the IND null hypothesis. However, as
both the parametric and historical models perform similarly, the shifted neural network model is
benchmarked as a satisfactory VaR model based on the test performed in this thesis. Interestingly,
the combined model (NNVaR 3) manages to accept the IND null hypothesis. However, due to the
combined model’s amount of breaches, or lack thereof, this result is considered to be of no influence
as it is expected that some clustering of breaches should exist over the test set.

Furthermore, regarding the shifted model, the Min VaR reaches a significantly lower minimum
than the historical and parametric approaches, demonstrating not only the capacity to account for
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particularly large losses but smaller ones as well. This is to some extent reflected in Sum if breach
which is also significantly lower than the benchmark models, meaning that even if the estimation
breaches, the di↵erence will be smaller in an economically significant way. If the model does not
breach, however, the aggregated sum Sum if no breach is more or less the same among the bench-
marks and the shifted model, a fact visible in the Avg. VaR as well. In aggregate, these results show
that the models perform comparably in terms of general performance over a longer time period, to
some extent reflected in figure 15 in the sense that the cumulative sums approach the same level.
The same figure also clearly highlights the more jagged behavior of the neural network model and
consequently its higher reactivity. It is due to this higher reactivity that the neural network model
experiences an increase in cumulative VaR during September 2018 through February 2019. A lower
cumulative VaR in conjunction with few breaches would mean that the investor is able to take on
more risk or alternatively maintain a higher liquidity. Although the model quickly corrects itself
after this period, producing low yet accurate VaR estimations, the cumulative VaR is at this point
already a↵ected. This inspires the notion of using the established models, which are indeed faster
and require less data than a neural network during calmer periods and the more reactive model
developed in this thesis during more turbulent periods where the reactive behaviour is beneficial.

Future research may benefit from evaluating ways to circumvent the need to manually shift the
model. Considering the success of a regularization term for the mixture probabilities, one may
consider ways in which to regularize the µ̂k’s and �̂k’s so that these are more distinguished from
each other, thus avoiding the collapse into a unimodal distribution. Similarly, one may investigate
ways to incorporate the VaR prediction into the loss function such that the model focuses on
creating reasonable quantiles rather than all-encompassing distributions.

5.2 Practicality

An important consideration, regardless of any potential success using MDNs for VaR estimation,
is the practical usefulness of such an approach. In this thesis, manual configuration was required
to achieve predictions which did not substantially overestimate the true portfolio loss at any given
period, whereas the benchmark models give su�cient estimations with little to no configuration
whatsoever. Disregarding manual configurations such as shifting the predictions, machine learning
methods in general and neural networks in particular require large amounts of data to learn the
patterns necessary for adequately predicting the target. In addition to low data requirements,
the benchmark VaR models are near instantaneous in generating predictions, whereas the MDN
approach employed in this thesis is time consuming both in the training and simulation phase. The
training can of course be performed once and updated for each day at minimal computational cost,
yet if one wished to employ the model for new portfolios, this would presuppose identical mechanisms
to the portfolio on which the model was initially trained. Still, prevailing VaR methods tend to
underestimate tail risk due to either assuming symmetry in returns (mean-variance) or relying on
only historical data containing too few observations of the catastrophic events one would most like
to capture in a risk management context. These considerations give credence to the possibility of
applying the benchmark models in periods of relative calm, when the market sentiment is bullish or
even weakly bearish, and employ MDNs or other sophisticated machine learning based approaches
in anticipation of dire market downturns. Of course, such ”black swan” events5 are by definition
impossible to foresee, motivating the use of machine learning and simpler methods concurrently.

5A metaphor for unpredictable and catastrophic events popularized by Nassim Nicholas Taleb.
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Lastly, it should be said that neural networks are ”black boxes”, in the sense that while a function
f can be approximated with arbitrary precision, no insight is given into the true nature of f . This
is problematic in the context of conforming to legislature such as e.g. MiFID-II, which emphasizes
transparency and protection of investors.

5.3 Neural Networks and Finance

Financial data is (in)famously hard to forecast given the myriad of influence any given event can
have on market sentiment. As evinced by the market crash and subsequent upturn experienced in
the first quarter of 2020, there are events which can stimulate market-wide behavior not motivated
specifically by rational or data-driven considerations. Patterns learned by neural networks over a
certain period of time may thus be rendered useless once new and obscure market actions occur,
problematizing the notion above of using machine learning methods concurrently for the purpose
of hedging against severe market events. Moreover, the e�cient market hypothesis suggests that
public market data is insu�cient for ”beating the market”, which may be seen as analogous to
minimizing risk, as either task invariably relies on predicting the future. Moreover, if artificial
neural networks are meant to simulate the biological neural networks in the physical brain, one
may question the mission to use the former for something the latter cannot actually do, i.e., predict
the future development of stock prices given a large data set of historical prices. Conversely, if
artificial neural networks are considered universal function approximators, one can contest the idea
that there exists a robust mapping from input in the form of historical stock prices to future
prices as output. Even if that would be the case, equivalent results may be equally attainable
with less complex machine learning methods, e.g., gradient boosting techniques. Still, MDNs are
interesting in a financial context since they do not strive for perfect point predictions but rather
conditional distributions which by construction o↵er a confidence interval for the predicted target.
This is particularly useful for risk management, where decisions are often based upon probable
scenarios and the severity of those scenarios should they occur. The somewhat underwhelming
results in this thesis may potentially be improved upon by including other features, such as price
trends, liquidity variables, and valuation ratios. The paradigm of bull and bear market may also be
challenged, and despite discouraging experimentation in this thesis and in Arimond et al, modeling
k > 2 regimes could potentially be motivated by the fact that certain market sentiments are not
su�ciently characterized by being bullish or bearish.
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We conclude that recurrent mixture density networks show limited promise for the task of predict-
ing e↵ective VaR estimates if used as is, i.e. without being regularized and letting all components
of the mixture distribution be generated within the network. The reason for this is that the model
consistently overestimates the quantile from which the VaR prediction is made. Reasons could
potentially be the behavior of one day ahead returns being relatively normal (and thus unimodal),
the use of ReLU in the LSTM-layer, and the fact that the weights generated by the network strive
to minimize the loss by making ”safe” predictions. By regularizing the loss function of the network
with regard to the mixture probabilities, one can achieve more balance between them at the cost
of reduced interpretability vis-à-vis the parameters in the regimes’ respective distributions. For
practical use, encouraging results were achieved when manually shifting the predictions by an av-
erage of the overestimation based on the validation set. In any case, the assumption that neural
networks are a viable method for VaR prediction remains dubious considering the complexity in
formulating and training the model when comparing with benchmark methods over periods of rela-
tive calm. An additional detraction lies in the vast amount of data required. Moreover, considering
the emphasis of transparency in regulatory frameworks intended to protect investors, the viability
of neural networks becomes further reduced due to a lack of interpretability. For crisis events,
however, the reactivity of the recurrent MDN approach becomes an important selling point missed
by other models and motivates further studies.

Specific suggestions for future research include:

• Explore other ways to classify regimes, through e.g. other machine learning
methods with more lenient data requirements. Focusing only on the classification
aspect of this task would allow for less data intensive machine learning methods, allowing for
more features to be used. Unsupervised methods could also be explored and allow for a more
flexible regime paradigm.

• Investigate why MDNs overestimate quantiles in their predictions. While no defini-
tive reason was identified in this thesis, potential theories were outlined in the discussion
and may be validated in future work. In line with this and as mentioned, one way could be
regularization of µ̂k and �̂k. As discussed in section 5.3, financial data in and of itself may
be di�cult for MDNs to model, and the issue might not be prevalent for other tasks. Thus,
it would be of additional interest to apply MDNs to financial data but not necessarily for use
in VaR prediction.

• Test more regimes and/or other distributions. In this thesis only the Gaussian distri-
bution and two regimes were tested. Although it might come at a cost of reduced economic
interpretability (defining market regimes other than bear, bull or maybe ”black swans”) it is
of interest to investigate if it would improve the model performance. Regarding distributions,
using for example a Student-t distribution, which allows better modelling of heavy tails, might
better capture outlier returns which in turn could improve the model performance.
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