
Uppsala universitets logotyp

UPTEC IT 23036

Examensarbete 30 hp

Oktober 2023

Automatic Voice Trade Surveillance
Achieving Speech and Named Entity Recognition in Voice Trade Calls
Using Language Model Interpolation and Named Entity Abstraction

Martin Sundberg & Mikael Ohlsson

Våra program civil- och högskoleingenjörsprogram (Klicka och välj program)

Civilingenjörsprogrammet i informationsteknologi

Uppsala universitets logotyp

Automatic Voice Trade Surveillance
Martin Sundberg & Mikael Ohlsson

Abstract
This master thesis explores the effectiveness of interpolating a larger generic speech
recognition model with smaller domain-specific models to enable transcription of
domain-specific conversations. The study uses a corpus within the financial domain collected
from the web and processed by abstracting named entities such as financial instruments,
numbers, as well as names of people and companies. By substituting each named entity with a
tag representing the entity type in the domain-specific corpus, each named entity can be
replaced during the hypothesis search by words added to the systems pronunciation dictionary.
Thus making instruments and other domain-specific terms a matter of extension by
configuration.

A proof-of-concept automatic speech recognition system with the ability to transcribe and extract
named entities within the constantly changing domain of voice trading was created. The system
achieved a 25.08 Word Error Rate and 0.9091 F1-score using stochastic and neural net based
language models. The best configuration proved to be a combination of both stochastic and
neural net based domain-specific models interpolated with a generic model. This shows that
even though the models were trained using the same corpus, different models learned different
aspects of the material. The study was deemed successful by the authors as the Word Error
Rate was improved by model interpolation and all but one named entities were found in the test
recordings by all configurations. By adjusting the amount of influence the domain-specific
models had against the generic model, the results improved the transcription accuracy at the
cost of named entity recognition, and vice versa. Ultimately, the choice of configuration depends
on the business case and the importance of named entity recognition versus accurate
transcriptions.

Teknisk-naturvetenskapliga fakulteten

Uppsala universitet, Utgivningsort Uppsala/

Handledare: Fredrik Lydén

Ämnesgranskare: Ginevra Castellano

Examinator: Lars-Åke Nordén

Sammanfattning
Denna masteruppsats undersöker effektiviteten av att interpolera en större generisk
taligenkänningsmodell med mindre domänspecifika modeller för att möjliggöra transkription av
domänspecifika konversationer. Studien använder ett korpus inom den finansiella domänen
insamlad från webben och bearbetad genom att abstrahera namngivna entiteter som finansiella
instrument, siffror samt namn på personer och företag. Genom att ersätta varje namngiven
entitet med en tagg som representerar entitetstypen i det domänspecifika korpuset, kan varje
namngiven entitet ersättas under hypotessökningen med ord som lagts till i systemets ordlista.
Detta gör instrument och andra domänspecifika termer endast till en fråga om konfiguration.

Ett proof-of-concept taligenkänningssystem med förmågan att transkribera och extrahera
namngivna entiteter inom den ständigt föränderliga domänen för finansiell handel utvecklades
som en del av studien. Systemet uppnådde 25,08 Word Error Rate och 0,9091 F1-score med
användning av språkmodeller baserade på stokastiska metoder och neurala nätverk. Den bästa
sammansättningen av olika språkmodeller visade sig vara en kombination av både stokastiska
och neurala nätverksbaserade domänspecifika modeller interpolerade med en generisk modell.
Detta visar att även om modellerna tränades med samma korpus lärde sig olika modeller olika
aspekter av materialet. Studien ansågs framgångsrik av författarna eftersom Word Error Rate
förbättrades genom modellinterpolation och alla utom en namngiven entitet hittades i
testinspelningarna av alla konfigurationer. Genom att justera vilken mängd inflytande som de
domänspecifika modellerna hade mot den generiska modellen förbättrade resultaten
transkriptionsnoggrannheten på bekostnad av entitetsidentifiering och vice versa. I slutändan
beror valet av konfiguration på användingsområdet av en implementation, samt vikten av
entitetsidentifiering kontra korrekta transkriptioner.

Teknisk-naturvetenskapliga fakulteten

Uppsala universitet, Utgivningsort Uppsala/

Handledare: Fredrik Lydén

Ämnesgranskare: Ginevra Castellano

Examinator: Lars-Åke Nordén

Contents
1 Introduction 3

2 Background 3
2.1 Automatic Speech Recognition 4
2.2 Signal Processing & Feature Extraction 4
2.3 Hidden Markov Models . 5
2.4 Hypothesis Search . 5
2.5 Acoustic Model . 6
2.6 Language Model . 7

2.6.1 n-gram Transducer Models 7
2.7 Neural Networks . 8

2.7.1 Neural Networks Based Language Models 10
2.7.2 Recurrent Neural Networks 10
2.7.3 Long Short-term Memory 12

2.8 Language Model Interpolation . 13

3 Related Work 13

4 Method 14
4.1 Delimitations . 15
4.2 Corpus Composition . 15

4.2.1 Test Data . 16
4.2.2 Information Abstraction 16

4.3 Implementation . 19
4.3.1 Web Crawler . 20
4.3.2 Corpus Parser . 20
4.3.3 Stochastic Language Model 22
4.3.4 Identifying Named Entities 22
4.3.5 Neural Net Implementation 23

5 Results 25
5.1 Stochastic Model Results . 26
5.2 Neural Net Model Results . 27
5.3 Interpolated Model Results . 27

6 Discussion 29

7 Conclusion and Future Work 31

8 Acknowledgements 32

Acronyms 36

Glossary 36

1

A Statistic Language Model Results 37

B Neural Languagel Model Results 39

C Two Models Interpolation Result 40

D Three Models Interpolation Results 47

E Pronunciation Dictionary 49

F Instrument Dictionary 50

G Number Dictionary 53

2

1 Introduction
In September 15, 2008, the investment bank Lehman Brothers collapsed as a re-
sult of the American sub-prime mortgage market. This lead to a full blown finan-
cial crisis reaching world wide. As a response, the American government signed
the Dodd–Frank Wall Street Reform and Consumer Protection Act (DFA) in
Juli 21, 2010 [1]. The DFA brought additional and stricter regulations con-
cerning supervision of financial markets, affecting federal financial regulatory
agencies and a large portion of other entities in the financial sector.

Furthermore, the European financial market complies to an extensive set of
regulation commissioned by European Securities and Markets Authority (ESMA)
[2]. Financial institutions must record and analyze trading of financial instru-
ments performed in agreement with a broker over telephone calls on the institu-
tion’s Voice Trading platforms to comply with ESMA and DFA regulations [3].
Voice Trading surveillance is thus relevant for any financial entity operating in a
global context. However, making such analysis requires at least as many hours
of manual labour as the extent of the voice trade recordings. It is therefore
reasonable to utilise software solutions that provide automatic transcriptions
for these recordings but is there an accurate and cost effective way to do so?

Is it possible to build a system that automatically transcribes the recorded
speech of a voice trade and efficiently extract market specific entity information
and if that is the case, how accurate can it become?

By using non-domain specific models we expect the results to be poor in
terms of both Named Entity Recognition (NER) and transcription accuracy.
We expect the same to be true by using only smaller specialized models. Is it
possible to combine a general model with a domain specific model to provide cost
effective and yet accurate entity detection and domain specific transcriptions? If
so, what relation does the transcription accuracy have with the entity detection
accuracy?

2 Background
Creating what henceforth will be called an Automatic Voice Trade Surveillance
(AVTS) system is closely related to the issue of automatically transcribing and
finding patterns in spoken language. Great advances has been made in the field
of Automatic Speech Recognition (ASR) in recent years that together with the
use of the Deep Neural Network (DNN) machine learning approach has lead to
a significant increase of applications in products aimed at business as well as
the consumer market.

3

2.1 Automatic Speech Recognition

A typical ASR system, illustrated in Fig. 1, consists of a few main com-
ponents. Its purpose, to find the most likely transcription w

⇤ of a sentence
w = (w1, w2, w3, ..., wn) communicated as a speech utterance u in audio wave
format [4]. The input is transformed from time to frequency domain and typ-
ically enhanced by removing noise and distortions. The processed signal û is
subjected to spectral analysis to extract a vector X of suitable acoustic features
to feed the following Acoustic Model (AM) component. The AM models knowl-
edge about acoustics and phonetics which integrated with X generates an AM
score p(X|w). Furthermore, in the search for a word sequence hypothesizing the
uttered sentenced the AM score is combined with a score P (w) from the Lan-
guage Model (LM) component which models valid expressions of the language
in question.

Signal Processing

Feature Extraction

Dictionary

Acoustic Model Language Model

Hypothesis Search

u

û

X

p(X|w)

D

P (w)

w
⇤

Figure 1: Typical ASR System Architecture [4]

2.2 Signal Processing & Feature Extraction

In order to decrease the Word Error Rate (WER), a measurement of the num-
ber of mistakes the system is making, the input signal, i.e. the recorded speech,
can be subjected to a number of different techniques to reduce background

4

noise or increase the Signal-to-noise ratio (SNR). This is done in order to
extract feature vectors that better represent the speech that was recorded.
For example, the open-source library Sphinx 4 developed by Carnegie Mellon
University (CMU) [5, 6] implements the well known filter bank overlap addi-
tion method [7, 8]. However, other research have been conducted, introducing
novel ways of increasing the environmental robustness to further decrease the
WER [9–11].

Feature extraction is a fundamental part of ASR that has evolved over time.
Different techniques have been used such as Perceptual Linear Prediction (PLP)
[12], Mel-Frequency Cepstral Coefficients (MFCC) [13] and the tandem method
[14] to name a few. These issues are however not further addressed as they do
not directly relate to the main objective, stated in 1.

2.3 Hidden Markov Models

In ASR systems, Hidden Markov Models (HMMs) are used to solve the decoding

problem Pmax(O,�), i.e. finding the most probable hidden state sequence S =
(s1, s2, s3, ..., st) in a HMM �(A,B) leading up to the sequence of observations
O = (o1, o2, o3, ..., ot), where A refers to the transitions probabilities and B the
observable output probabilities of the HMM, as exemplified in Fig. 2.

A HMM refers to a graphical model utilizing some hidden stochastic Markov
Process, meaning that the state sequence S = (s1, s2, s3, ..., st) leading up to the
sequence of observations O = (o1, o2, o3, ..., ot) at time t is unknown [15]. Fur-
thermore, a Markov Process satisfies the Markov Property, referred to as mem-
orylessness as the value of each state sn is independent of all states preceding
the previous state sn�1.

s1 s2 s3

o1 o2 o3

a12

a23

a32

b11 b12 b22 b23 b33

Figure 2: Example of a simple Hidden Markov Model; where s denotes a state,
o a possible observation, a a transition probability and b an output probability.

2.4 Hypothesis Search

The problem of speech recognition can be formulated as

w
⇤ = argmax

w
[P (w|X)] (1)

i.e. finding the most probable sentence w
⇤ given an acoustic feature vector X.

However, finding the probability P (w|X) of a word w given a feature vector X

5

is a difficult problem. AMs are therefore modelled to solve the slightly easier
problem of finding p(X|w), the likelyhood of X given w. Together with the
probability of the LM P (w) and a pronunciation dictionary D, mapping words
to their phonetic transcription, the hypothesis search, or decoding problem, can
be approximated as

w
⇤ ⇡ argmax

w2D
[p(X|w)⇥ P (w)] (2)

the most likely combination of pronunciation and language rules.

2.5 Acoustic Model

The AM is responsible for transforming the spoken waveform into feature vector
sequences. In Sphinx 4, the framework used for this project, there are three
different types of AMs as part of the library: continuous, semi-continuous and
Phonetically tied model (PTM). The PTM is the one that was used for this
project and is also the default AM in Sphinx since it provides a good compromise
between speed and accuracy, according to CMU, the developers of Sphinx [16].

The AM will not be covered in detail, but in short the AM is tasked to
transform the acoustic pressure generated by, for example, speech into phonemes
[17]. Speech consist of phonemes or other linguistic units, but understanding
the acoustics of the variance created by such things as turbulent noise, voice
breaks and tremors is key for an accurate transcription of the spoken word and
is typically modeled as HMM triphones as illustrated in fig. 3 and exemplified
in fig. 4. This This is what the acoustic model provides [18].

s1 s2 s3

Figure 3: HMM Triphone

0 1 2 3 4
D/1 EY/0.5

AE/0.5

T/0.4

D/0.6

AH/1

Figure 4: Finite automaton as a Pronunciation Model Acceptor built to termi-
nate on different pronunciations for the word data.

6

2.6 Language Model

In ASR systems, the LM attempt to model the most probable ways of expressing
one self in a particular language. When hypothesis search is conducted, the
system calculates the likelyhood of different sentences and tries to predict the
next word based on what was previously said. More formally, the LM models
the probability P (wk|w1, w2, w3, ...wk�1) of the next word wk based on a the
previously seen word sequence w1, w2, w3, ...wk�1.

2.6.1 n-gram Transducer Models

An n-gram is a sequence of n words, where a unigram denotes an n-gram with
n = 1, a bigram with n = 2, a trigram with n = 3, a 4-gram with n = 4,
a 5-gram with n = 5 and so on. An n-gram model is a Stochastic Language
Model (SLM) for predicting an element in a Markov Chain of order n� 1 [19].
For example, an n-gram based LM could estimate the probability of a sentence
w = (w1, w2, w3, ..., wK) by applying the chain rule of probability

P (w) =
KY

k=1

P (wk|w1, w2, w3, ..., wk�1) (3)

such that the probability of a single word occurring in the sentence approximates
to the product of the probability of the n� 1 words preceding it [19]:

P (w) ⇡ Pn(w) =
KY

k=1

P (wk|wk�(n�1), ..., wk�1) (4)

Furthermore, an n-gram LM can be represented by a weighted Finite State
Transducer (FST) such that the weights are the probability distribution of the n-
grams [20]. FSTs are finite-state machines capable of translating, or transducing,
the content of its input tape. If the input and content of the input tape match
the conditions of a transition in the current state of the FST, a pop operation is
performed on the input tape and a push operation on the output tape, effectively
generating a transduced output string. FSTs can be used as the hidden model of
a HMM where each accepted state sequence is a Markov Process which is what
makes them suitable for language modelling in ASR systems. Eventually, each
uttered word accounted for in the LM, AM and the dictionary will be evaluated
like the transducer in Fig. 5.

In the simple bigram approximation FST illustrated in Fig. 6, the bigram
(w1, w2) is represented as a transition between state w1 and w2 where the
weight of the transition between the two words is the probability of their bigram
P (w2|w1). The bigram (w1, w3) is however not represented in the model and
is therefore estimated as �(w1) ⇥ P (w3) by the Back-off weight �(w1), the
probability that w1 is followed by any another word in the model, and the
unigram weight P (w3), the probability that w3 exists in a sentence [20,21]. This
is done as to allow previously unseen sentence structures and combinations of

7

words that has been pruned to reduce the size of the model. Note however
that the weights of n-gram FSTs are usually modelled as the negative logarithm
of the n-gram probabilities �log(P (wk|w1, ..., wk�n+1)) as to promote certain
computations [20].

0 1 2 3 4

5 6

D : data/1

D : do/1

EY : ✏/0.5

AE : ✏/0.5

T : ✏/0.4

D : ✏/0.6

AH : ✏/1

UW : ✏/1

Figure 5: Pronunciation Lexicon Transducer as a Weighted FST built to termi-
nate the words data and do

.

w1 w2

b w3

w2 : w2/P (w2|w1)

✏ : ✏/�(w1)
w2 : w2/P (w2)

w3 : w3/P (w3)

Figure 6: Bigram aproximation model [20]. As the bigram (w1, w2) exists in
the model it has a probability of P (w1|w2), whereas (w1, w3) has an estimated
probability of �(w1)⇥ P (w3) since it is not modelled.

2.7 Neural Networks

Language modelling is arguably a problem intuitively suitable for neural net-
works as their strength lay in finding an output based on complex, abstract
relations in the input data. Due to this property, neural networks has been
found to outperform purely SLMs, i.e. conventional n-gram models, in terms of
accuracy [22,23].

The design of the artificial neural network model is inspired by the structure
of the biological brain and has had great success in solving complex problems as
a tool for machine learning. As illustrated in Fig. 7 they are are constructed by
an input layer x, an output layer y and a set of hidden layers h in between, each
containing a set of nodes referred to as neurons. Typically, each neuron in such
a net is connected to every other neuron of the previous layer by a weighted
connection named synapse after its biological counterpart. Fig. 8 depicts the
design of a neuron and how the weighted sum of its inputs

Pn
i=1 xi⇤wi is passed

8

through an activation function f , typically a linear, sigmoid or logistic function,
which determines whether or not the neuron should activate. In turn, activated
neurons fires a signal through their weighted synapses to the neurons of the
succeeding layer, and such is the signal propagated through the network.

Neural networks are commonly used for solving different classification prob-
lems e.g. persons based on human facial features, abnormalities in large data
sets or the next element of a sequence, like words in a sentence for instance.
Classification networks can be taught to distinguish different classes by conduct-
ing supervised learning. In supervised learning, a training set is used, stating
what input corresponds to what output label. As the inputs are propagated
through the network, the outputs are compared to the correct labels in the cor-
pora and the parameters in the network are adjusted to improve accuracy of
future predictions. The most common way to do this is a process called back-
propagation. It does so by propagating the error backwards from the output
nodes, through the hidden layers and back to the input nodes, adjusting each
synapse parameter by optimizing an objective function. For example, this could
be done by minimizing a cost/loss function such as the mean squared error

C(w, b) =
1

n

nX

i=0

|ŷi � yi|2 (5)

where the cost function C with weights w and biases b is calculated as the mean
of the error ŷ � y squared, such that ŷ depicts the vector of n predictions and
y the observed outputs.

x1

x2

x3

x4

h11

h12

h13

h14

h15

h21

h22

h23

y1 y1

y2 y1

h1 h2x y

Figure 7: Neural network with input layer x = {x1, x2, x3, x4}, two hidden
layers h1 = {h11, h12, h13, h14, h15}, h2 = {h21, h22, h23} and an output layer
y = {y1, y2}.

9

x1

x2

...
xn

⌃ f y

w1

w2

wn

wb

Figure 8: A neuron calculates the weighted sum as the dot product of its in-
put x = {x1, ..., xn} and synapse weights w = {w1, ..., wn}, including the bias
weight wb, and passes the summation as input to its activation function f which
determines whether or not the neuron should fire.

2.7.1 Neural Networks Based Language Models

The Neural Language Model (NLM) can be considered a classification network
where each word in the models vocabulary is its own class. The current word
is thus represented by some input vector, e.g. a one-hot representation, and
the output vector, i.e. the next word, is the probability distribution between
the different classes. By conducting supervised training, a network can thus
effectively learn what word, or class, is likely to follow another by minimizing
C, the cost of the negative log likelyhood function where y are the label vectors
and ŷ the observed predictions of the network:

C = �
nX

i=1

yi ⇥ log(ŷi) (6)

However, traditional neural networks lacks memory, the ability to remember pre-
vious predictions is intuitively important when building neural language models.
A one-hot word level language model without memory would simply propagate
each word wt of a sequence w = (w1, w2, ..., wn) through the network, unable to
account for the previously propagated words, effectively calculating and forget-
ting the probability of each bigram P (wt+1|wt) instead of calculating the prob-
ability of the entire sequence P (wn|w1, w2, .., wn�1). This issue can be solved
by introducing feedback loops into the network, thus allowing information to
persist over the execution of a number of predictions. Such a construction is
called a Recurrent Neural Net (RNN).

2.7.2 Recurrent Neural Networks

Fig. 9 is an alteration of Fig. 7 illustrating how nodes in the recurrent hidden
layer has a box attached, they represent a bounded history, a loop of previous
states being fed back into each node. To illustrate this feedback loop one could
unfold the history where st is the state at time t and its calculation,

st = f(wxt + wst�1) (7)

is based on the previous state of the node, as well as the input at the current
step.

10

As seen in Fig. 10 each element in the history buffer is fed as another input
to the neuron, thus allowing it to fire based on a sequential context.

x1

x2

x3

x4

h11

h12

h13

h14

h15

h21

h22

h23

y y1

h1 h2x y

Figure 9: Recurrent Neural network with input layer x = {x1, x2, x3, x4}, a
recurrent hidden layer h1 = {h11, h12, h13, h14, h15}, a non-recurrent hidden
layer h2 = {h21, h22, h23} and a single output in its output layer y. Each box
attached to the nodes in h1 represent the nodes recurrent memory.

x1

x2

...
xn

⌃ f yt

wt�1wt�2wt�3

yt�1yt�2

yt

w1

w2

wn

wb

Figure 10: A neuron in a recurrent neural network with a memory of size 3 uses
the history (yt�1, yt�2, yt�3) to calculate yt at time t.

11

2.7.3 Long Short-term Memory

Even though RNNs solves the problem of data persistence and could be trained
to find the next word Stockholm given the history "the capital of Sweden is",
modelling RNNs to remember long term dependencies has been proven diffi-
cult [24]. For example, the city of Stockholm should arguably be more likely
to be uttered in a conversation about Sweden than other counties, even when

they occur sentences apart. A network design based on RNN utilizing Long
Short-Term Memory (LSTM) algorithms is however able to learn long term de-
pendencies between input data and base predictions on the topic of conversation
as well sentence structure [25,26].

The older the history is of an LSTMs, the lesser is its contribution to the
output of the model. The gradually diminishing effect of the information applied
from the context history can be exploited in neural LMs using recurrent layers
by restricting the memory size in an n-gram fashion [27]. This does not only
mean that the number of hyper-parameters in the RNN can be decreased but
also that there is no point in conduction hypothesis search on sequence lengths
longer than the context history. This means that all predictions that share
the same context history consisting of at most n � 1 words are truncated. Fig
11 illustrates how two full search-tree histories shares the most resent history
"sell at" and is therefore considered equivalent when applying trigram history
clustering. Due to the truncation of n-gram based history clustering, the same
search heuristics commonly used for n-gram FST models can be applied for
neural LMs [27] e.g. beam-search.

The issue of neural LMs and their computational costs has been addressed in
several studies with the aim to utilize DNNs for direct lattice rescoring. As a lot
of computational cost stems from output layer computations, one approach is to
model the output layer with fewer words than present in the input vocabulary,
a so called short-list [28]. This approach requires an output node representing
out-of-shortlist words i.e all words not represented by a node in the shortlist,
without it, out-of-shortlist word statistics are simply discarded.

sell

sell

high

at

at

now

Figure 11: An example of trigram based RNNLM history clustering [27].

12

2.8 Language Model Interpolation

Neural networks have proven successful when used in conjunction with more
traditional HMMs. The downside of using DNNs, however, is that the training
time of a model of a respectable size on a corpus of a respectable size becomes
substantial. The application area in which new words occur on a regular basis
makes it impractical to allocate the resources needed to retrain the models as
often as new words appear. A solution to this problem is to interpolate two
different language models, trained on different corpora, one larger generic n-
gram model and one smaller domain specific neural net based model. The
upside with this approach is that both training and execution time of the NN
model can be reduced significantly.

Interpolation of two models in ASR systems are often done linearly, as such,
interpolation of a generic n-gram model and a domain specific neural network
model could be described as

P (wk
0) = ↵PNG(w) + �PNN (w) (8)

where k is the length of the word sequence and ↵ + � = 1 are weights that
is manually tuned to produce the best result.

However, the runtime of large neural network models makes it an unviable
option to utilize linear interpolation for direct lattice rescoring without taking
additional measures. Thus is the domain specific neural network model often
used to select the best hypothesis out of an n-best list from the generic model
[23]. This approach is however highly use case dependent and not fully reliable
unless all keywords in the domain specific model overlaps with the vocabulary
of the generic model, an issue addressed in section 4.2.2. Furthermore, there
is no guarantee that the best or even a good prediction of the domain specific
model is among an n-best list conceived by the generic model.

3 Related Work
ASR is fundamentally addressing a pattern recognition challenge that can be
very difficult to automate [29] [30]. These types of problems appear to neces-
sitate intelligence to solve, especially since they seem trivial for humans while
immensely difficult for machines. As such involving techniques that emulate the
human brain like artificial neural networks have shown great potential in solving
them [30] and will be attempted in this project.

When talking about NER it’s common to define a set of characteristics,
called features, that a proper noun should have in order to be considered a
word of interest [31]. The term proper noun stems from the fact that given
the right context anything can become a noun. For example the word blue is
a color but could also be used as the name of a company. Another example
is that without the right context a proper noun would be considered nonsense.
For example Netflix is not a word in any dictionary, but should be found and
considered a noun in the context of market surveillance. NER has proven to

13

be a useful tool to solve these kinds of problems [32]. While these aspects are
interesting and should be considered a good candidate for future work, it was
decided to not pursue this approach when tagging instruments in the corpus
material, as discussed in section 4.2. Since all instruments in the corpus was
known beforehand, it was not of interest to implement these kinds of feature
based NER system at this time and choose the more simplistic approach of
tagging the corpus our selfs and implement our own NER algorithm.

4 Method
By utilizing an open-source ASR system, Sphinx4, the intention is to build a
proof-of-concept AVTS system that produces data which can be combined with
structured Market Data for the purpose of market surveillance. By configuring
the AVTS system to include the phonetic transcription of the instruments that
together constituted the OMX30 index found in Appendix F, based on the
pronunciation dictionary found in Appendix E, various models will be evaluated
on their ability to transcribe four recordings in the financial domain.

The relationship of interpolation between domain-specific LMs and a generic
LM will be explored by evaluating the WER as expressed in Equation 9 and NER
in terms of F1-score as expressed in Equation 10. WER provides a measurement
of how well a model is able to transcribe recorded speech and is defined as the
substitutions S, deletions D and insertions I divided by the number of words
in the reference transcription N .

WER =
S +D + I

N
(9)

The F1-score measures the accuracy of binary classification problems like NER
and provides a measurement of how well the models are able to detect instru-
ments for effective market surveillance. It is the harmonic mean of the models
transcription precision and recall i.e. the number of true positives TP divided
by the number of recognised Named Entities (NEs), including false positives
FP , respectively the number of true positives TP divided by the number of all
NEs that should have been identified by the system, including false negatives
FN . A perfect F1-score is therefore 1, whereas the worst possible score is 0.

F1 =
2TP

2TP + FP + FN
(10)

The WER of the generic model will provide a baseline for transcription accu-
racy but is expected to be fairly low on the domain-specific recordings. Likewise,
the small size of the domain-specific models should prove to be somewhat in-
effective at translating the same recordings but with the ability of NER. The
thesis to be explored is whether interpolation of these models provide a better
result in terms of WER and the ability to detect NE and draw conclusions about
the relationship between interpolations weights and these measurements.

14

The interpolation thesis will be considered successful if the WER of the
interpolated models are lower than the generic model and the domain-specific
models in isolation, provided that at least 75% of the NE are found in the
test recordings. The AVTS system will be considered successful in itself as a
proof-of-concept if a WER of 25 or below and an F1-score of 0.8 or higher is
achieved.

4.1 Delimitations

A vital part an AVTS system utilizing ASR is to transcribe dialogues between
people within a certain setting, for instance a trader and a stock broker talking
about a trade or trading some particular instrument. Since there is no reliable
source of transcribed recordings available for the authors, a problem arises. In
order to create a fair, non arbitrary, test for the system such material must be
acquired. If there were a body of such material, whether of traders trading or
otherwise, then the material must be transcribed by hand. This is of course a
very large undertaking within itself and deemed, by the authors, not within the
scope of the project. These problems and how they are solved or circumvented
are discussed further in section 4.2.

The project will mainly focus on recognizing instruments not part of any
corpus. However, the world is global and within the financial market it is not
only possible, but probable even, that instruments may have foreign names that
has no phonetic transcription available, which in addition is highly likely to vary
depending between different speakers. This within itself is it’s own research area,
well worthy of it’s very own Master’s Thesis project, and is thereby assumed to
be correctly working.

Secondly the project is relying on the quality of the corpora used for the two
different language models. The material collected for this project is part of a
proof of concept and will not be part of any release. This means that the WER
should not be the only thing that determines the success of the project, but this
will be discussed more in detail in sections 5 and 6.

4.2 Corpus Composition

In order to develop, tune and test the implementation, a domain specific corpus
had to be generated. As discussed briefly in section 4.1, there are some chal-
lenges associated with this. Firstly, the success of the tests are highly dependant
on the relation between the corpus material and the voice recordings used to
test the program. Since these two entities are separate, and not part of the
same corpus, the outcome can be biased. For example, if the voice recordings
contain a certain sentence, which differs widely from anything in the corpus
material, the outcome will be very poor. However, if that particular sentence is
represented exactly within the corpus then the tests will yield very good results.
This is a problem and since the goal for the overall project, exceeding that of the
Master’s Thesis, is to create a domain specific language model that can handle
the type of domain specific banter and such. In consultation with a domain

15

expert, and with some research, a couple of sentences to test the application
was produced and recorded, and a source for domain specific material was es-
tablished. This source consists of a collection of web forums that was scraped
and processed for language model creation. As the vigilant reader will notice,
this does not withdraw anything from the risk of biasing the test result. Given
the poor circumstances, in this regard, there is no satisfying way to eliminate
this risk, however, in an attempt to reduce it some measures was taken, further
discussed in section 6.

Gathering a corpus was done by using a web crawler to scrape different
forums and sites, with domain specific content. The specific sites were used
for data collection was selected in joint consultation with Scila AB. The data
needed to be domain specific but have some overlap with the generic language
model corpus. It needed to contain words that are used in a domain specific way,
perhaps by using a verb as a noun, for example "Blue point" where "blue" is
used as a noun and not a verb, but also words not contained at all by the generic
model. This could be guaranteed to be the case since all words in a language
model must be represented in the dictionary, which means that a word not found
in the dictionary is not part of the vocabulary of the language model.

4.2.1 Test Data

After scraping the websites selected for corpus construction, a selection of ar-
ticles were excluded from the corpus material, and set aside for another use.
Instead of using these articles as part of the training material, they were used
as base for voice recordings to be used to test the entire system, discussed more
in section 5. The files were not used exactly as is to test the system, but some
of it’s key features were altered to test different aspects of the system. There
are two main aspects of the system that is critical to the projects success that
was tested; numbers and instrument names. The test files are by no means
exhaustive, created to test a small portion of the system. In order to get a
varied test the numbers were tailored to give a broad spectrum of what might
be heard in a live situation. For example, fractions, decimal numbers and whole
numbers are all represented, but not all variations are. The same principal was
applicated to instrument names with a couple of restrictions, further discussed
in section 5.

The articles selected for testing was recorded by four native US English
speaking individuals. Two female and two male students were recorded, with
little or no accent.

4.2.2 Information Abstraction

LMs used in ASR systems can be subjected to information abstraction for a
number of reasons. The AVTS LMs are modelled with a set of different ab-
stractions as to improve their accuracy and allowing infinite additions of certain
types of entities. Abstraction is done by classifying words according to some
desirable criteria and the LM corpus is then processed such that the classified

16

words are replaced by a word, or tag, representing the class.
Out-of-Vocabulary Words Words that only occur a few times in the train-

ing corpus of a LM makes the model less effective. They do so by enlarging
the model without providing it with any reliable way to predict the seldomly
uttered words as there is not enough statistic information in the corpus about
them. In extension, this has an effect on the entire ASR system. More words
means larger HMM search trees and longer probability calculation times. How-
ever, one can classify seldom used words as unknown and replace them in the
corpus with a common tag < u >. The effect of this abstraction is two fold,
the size of the model is reduced in relation to some used occurrence threshold
and the model gains the notion that there exists a set of words outside of its vo-

cabulary. Even though such Out-of-Vocabulary (OOV) words may not contain
a lot of information in themselves compared to words in the vocabulary, such
an input node allows the model to handle an infinite number of input words
and, depending on implementation, could make contextual predictions without
having learned every single word of a sequence.

When interpolating LMs in ASR systems there are two choices in terms of the
vocabulary used to conduct hypothesis search. Either the search is conducted
based on the intersection or union of the LMs vocabularies and unless all models
uses the same vocabulary, the united vocabulary will provide the ASR system
with a more complete set of available language structures. However, a united
vocabulary can only be used as long as there is some mechanic in the ASR
system that keeps the models from trying to predict the probability of OOV, as
they are unable to do so by design. If a LM receives a word sequence containing
a word from another LMs vocabulary during hypothesis search, the OOV word
can be exchanged with the < u > tag, allowing the LM to make a prediction.

Named Entities The concept of OOV words is expanded and further devel-
oped in the AVTS system to hold all words of a certain type under one tag.
By doing this the ASR recognizer can be set to recognize new words within a
specific category set by the tag. This generalises the probability over all mem-
bers of that category. For example, if numbers are represented by a tag and the
corpus contains the following sentence "Give me five apples, please", then that
sentence would be rewritten as "Give me < n > apples, please". This way, any
number can be inserted instead of the < n > tag, all with equal probability.
This is beneficial when the actual number in the text is unimportant but the
fact that there is a number in a particular position in the word sequence is of
importance. For example, if the speech to be transcribed is suspected to cover
a large amount, for some definition of large, of talk about apples and numbers
of apples and these numbers are of particular interest, then it would make sense
to insert a tag for the number in the text corpus to remove bias from certain
numbers.

All of this is then later accommodated for when creating the HMM search
tree. The model reader must be created in such a way that when loading
the statistical language model no tags are loaded into the vocabulary. The
vocabulary is a data structure holding all available words for a particular LM
and made available for other parts of the program in order to have a search

17

conducted. At a later stage when the search engine asks for the probability of
any word that is a member of a tag, then the probability of that tag is returned.

Numbers A statistic language model is a representation of the statistical
connections of words and sentences. However, not all words are valuable in it’s
explicit form but more so in it’s abstract form. For example, in the sentence
"I’ll sell you eighty shares", the number eighty is not valuable. The sentence
represents someone offering someone else equity in a company, that number
happens to be eighty, but could just as well be anything else. It is not uncommon
that people trade a number of items with one another, but that number varies,
and should not be skewed towards any specific number arbitrarily set in the
corpus material. To alleviate this problem a number tag < n > is introduced,
and all numbers in the corpus is replaced with this numbers tag, resulting in
the following sentence, "I’ll sell you < n > shares".

Furthermore, creating a dictionary and vocabulary with all numbers in the
world is impossible given that there exists an infinite amount of numbers.
However, all numbers consists of a finite set of words when spoken. All the
spoken numbers in e.g. 123, "one hundred twenty three" or "one hundred
and twenty three", can be substituted with an abstraction and you will get
< n >< n >< n >< n > or < n >< n > and < n >< n >. If numbers,
however large, are parsed to a single < n > tag the corpus will skews the word
search results in relation to the unprocessed corpora however the authors claim
that having a single < n > tag for all numbers not only makes processing of the
corpora a lot less complicated but also does not skew the resulting model into
providing an extreme bias towards numbers following numbers.

Instruments & Companies Following the reasoning about numbers uttered
in conversation, companies and financial instruments can be classified and ab-
stracted as a single tag < i > to represent that any company or instrument
can be spoken about in the same way. This is of course a trait of the domain
of market surveillance that does not necessarily hold for systems transcribing
speech of other domains. Using the tag representation also has the advantage
that the system allows addition of companies and instruments continuously as
they enter the market by appending them to the pronunciation dictionary in-
stead of gathering corpora containing the new information and retraining the
model.

However, names do not necessarily adhere to the standard spelling conven-
tions of a particular language due to them being of foreign origin or other factors
such as the creative mind of a parent or a company founder. This inherent am-
biguity of pronunciation becomes problematic when designing a system building
name hypothesis of companies and financial instruments. An example of such
an ambiguity is the Swedish Kinnevik B stock. It is unclear exactly how a
non-Swedish speaker would pronounce Kinnevik and whether a native Swedish
speaker should use a Swedish pronunciation, CH IH N EH V IY K, in a conver-
sation with a non-Swedish speaker such as an Englishman to be understood or
an English variant e.g K IH N V IH K. Constructing pronunciation dictionaries
is a non trivial task as shown by this example and an automated approach using
Grapheme to Phoneme (G2P) converters thus becomes a research area on its

18

own. Therefore, the AVTS system uses a hand made pronunciation dictionary
for the instruments in the OMXS30 index, an index of the thirty most traded
stocks on the Swedish market venue Stockhlmsbörsen.

Consequences One of the problems with creating statistic language model-
ing is the volatility of the corpus material used. Introducing an abstraction for
named entities reduces that volatility, and takes the model closer to a grammar
like state. Using a language model that consists purely of grammar is not de-
sirable since no official language follows any strict grammar, which makes them
impractical to implement, and because people do not always follow the gram-
mar, rendering the LM useless. So how many new tags can be introduced? For
example, the sentence "Give me five apples, please" could be made abstract by
using tags, resulting in "< verb > < noun > < n > < object >, < adverb >".
This way the corpus is formed more as a statistical grammar than anything else.
There are mainly two problems with this. Firstly, no language, English included,
follows any strict grammar. For example, "Drive house three cups, truthfully"
is not a meaningful sentence but does not violate the rules set above. Secondly,
it quickly becomes impractical to replace all words with it’s correct word class
or any other grouping. Not only because of the mentioned problem, but also
because all words classified needs to be divided and correctly inserted in the
appropriate list for later search. As a further consequence of this the searches
would be much more time consuming. The searches gets larger because every
time a tag is encountered, all the values that has been abstracted needs to be
looked up.

Since an AVTS system lies in the domain of financial markets, the decision
was made to limit the number of tags to instruments, a few names and numbers.
The reason why these entities are abstracted away from the corpus material is
because they play an integral part of market surveillance but are without value
in their explicit form as a corpora.

4.3 Implementation

The AVTS system is developed as an extension to the existing open-source ASR
library Sphinx 4, developed by CMU. The three main parts that was created was
the added support for language models using neural nets, a parser for cleaning
up corpus material and the added functionality of using tags to identify NEs,
conceptually discussed in section 4.2.2.

As seen in the system architecture diagram Fig. 12, the AVTS system utilizes
a Web Crawler that scrapes the internet for raw corpus material c and extract
the relevant data ĉ. ĉ is then passed to a Parser which refines the corpora
before it is stored for later use. This final version of the corpora, c⇤, is used to
generate statistical and neural LMs which are interpolated in the search for the
word sequence w

⇤ based on the utterance u stored in the voice trading database.
The hypothesis search tree in ASR systems utilizing LMs with a respectable

vocabulary size tends to become too large for exhaustive search approaches,
such as the breadths first Vertibri algorithm, to be deemed as feasible options.
Optimized methods such as beam search can thus be used to find a solution

19

within a reasonable time frame and was thus selected for the AVTS model,
however sacrificing the guarantee of finding the optimal solution.

The interpolation of different models is done by adding the weighted proba-
bility of each given word sequence and configured model. This means that the
different models can be weighted to calibrate the result. If a word in the current
hypothesis search sequence is unknown to a specific LM in the interpolated LM
it is exchanged with the the unknown token < u > for that model.

4.3.1 Web Crawler

As a mean to attain corpus material, the Java based web crawler library crawler4j
was utilized. Each web crawler is designed to target a specific source and con-
sists of two classes, the web crawler and its controller. The controller class
specifies on which website search should be conducted and how many crawler
instances should work in parallel to fetch data from it and where to store the
gathered information. Each crawler class is specilaized to gather data on a spe-
cific website by implementing two methods, shouldVisit() which decides which
hyper links to follow continue the search and visit() which processes the web
page’s html elements to extract the relevant information.

4.3.2 Corpus Parser

To make the extracted material of the web crawler suitable as language mod-
eling corpus it must be further processed. The most important aspect of the
corpus parsing is to normalize different variants of words, implement the various
information abstractions discussed and structure the data in a suitable format.
Following are the operations executed by the corpus parser:

Add start and stop tag to each sentence w in the corpus C.

8{w 2 C} : w [<s>, w,</s>] (11)

Convert currency symbols to words.

Given the currency conversion map
f : A! (dollar, pound, euro, yen)|A = ($,£,€,¥)

then
8{s 2 w|s 2 A ^ w 2 C} : s f(s)

(12)

Abstract instrument names and symbols to related NE tag.

Given the set of instruments I then
8{i 2 I|i 2 w ^ w 2 C} : i <i>

(13)

Abstract person names to related person name tag.

Given the set of names P then
8{p 2 P |p 2 w ^ w 2 C} : p <p>

(14)

20

Signal Processing

Recordings

Feature Extraction

Dictionary

Acoustic Model Language Model

Hypothesis Search

Models

NLM GeneratorSLM Generator

CorporaParser

Web Crawler

Web

u

û

X

p(X|w)

D

P (w)

w
⇤

lm

lmlm

c
⇤

ĉ

c

c
⇤

c
⇤

Figure 12: AVTS System Architecture

21

Abstract numbers.

Given the number conversion map
8{n 2 R} : n <n>

(15)

Abstract infrequently occurring words as OOV.

8{w 2 Cn |
nX

i=1

[wi = w] 5} : w <u> (16)

Table 1: Data set
Data set sentences word count <u> <i> <n> <p>
Training 43148 867206 19898 12701 30790 4997
Validation 4795 95711 2094 1220 3315 619

4.3.3 Stochastic Language Model

LMs could now be constructed given the output described in the previous section
4.3.2. For this project the SLM variant n-gram LM was chosen, not only for it’s
popularity but also for it’s simplistic nature.

The n-gram LM consists of the frequency by which word sequences of length
1 to n is present in the provided body of text. This means that when n increases
the statistical probability for any given word sequence lowers, indicating that the
relationship between the size of the corpus material and the n can be optimized.
This relationship does not fall under the scope of this project.

In order to create the SLMs intended for this project the tools supplied by
CMU Sphinx4 in the ARPA format was utilized. These tools provided the means
for creating multiple LMs with different n-values and corresponding dictionaries,
later used by the system.

4.3.4 Identifying Named Entities

In order to make the system as modular as possible, the amount of tags used
is specified only during execution. This means that the number of tags used is
specified while creating and managing the corpus, used as the domain specific
one. The system builds up a search tree using a vocabulary. The vocabulary
consists of all the unique words in the model. These words are then fed back
into the HMM and their probabilities fetched from the language models. The
problem is that since all the tags supported are scattered within the model,
these needs to be replaced in the vocabulary, one cannot get the probability of a
tag within speech. So all tags are removed from the vocabulary, and instead all
the members of all the tags are added. All members are marked with the specific
tag that it is a member of. At a later stage when a request for a probability is
received, these members are switched back to the tag within the word sequence.

22

This means that all the members get the same probability from the language
model. Using the previous example in section 4.2.2, the number "five" in the
sentence "Give me five apples please", is just as likely as the number "four". In
this example it is easy to argue that a smaller number is more likely than some
large arbitrary number like one hundred, or a billion. In regards to the number,
there is a case to be made for this, however, it is not as clear in regards to other
tags, instrument names for example.

4.3.5 Neural Net Implementation

The Sphinx 4 library does not support any neural network features and as
such, does not have native support for NLMs. However, this feature was imple-
mented in the ASR system by modelling neural networks with the Java library
Deeplearning4j (D4J) and implementing custom Sphinx 4 LM classes that uti-
lizes said models in the speech recognition process. An RNN model illustrated
in Fig. 13 was created using the parameters seen in Table 2 which yielded a
model that yielded a 37.8% improvement on the training set, plotted in Fig. 14,
and 8.7% on the validation set, plotted in Fig. 15, over 60 epochs. The neural
network was trained using negative log likelihood as loss function which aligns
with how the SLM expresses n-gram likelihoods. Alignment between how the
models express likelihood is crucial for appropriate interpolation.

Input

LSTM1 LSTM2

Output

Figure 13: LSTM Model Setup

Table 2: LSTM Model Parameters
Parameter Value
Layer size (LSTM 1) 2500
Layer size (LSTM 2) 2500
Optimization Algorithm Stochastic Gradient Descent
Truncated back propagation through time length 35
Example length 70
Learning rate 1.0E-5
RMS Decay (Root Mean Square Decay) 0.95
L2 Regularization (Weight Decay) 0.001
Loss Function Negative Log Likelihood

23

0 0.5 1 1.5 2
·104

150

200

250

300

350

Iteration

Av
er

ag
e

Lo
ss

LSTM Training

Figure 14: The NLM model gains the most knowledge in around the first 5000
iterations, about 12 epochs, of learning.

10 20 30 40 50 60
400

420

440

460

480

500

Epoch

Av
er

ag
e

Lo
ss

LSTM Validation

Figure 15: The NLM model is slowly improving on the validation set over 60
epochs. Improvement is leveling out around 40 epochs.

24

5 Results
The AVTS system was tested using the files discussed in section 4.2.1. The
accuracy in terms of WER and NER can be found in the tables Table 9 - Table
23 highlighting the results for the various model/weight combinations.

Running the generic model on the four audio recordings provided an average
WER of 31.63 as shown by Table 3. The model was run both as a standalone and
as a single model interpolated with no other model to show that the interpolating
code does not influence the results. Table 4 also shows that, as expected, none
of the named entities were found. This is intended to show that the domain
specific models are the only models contributing to find named entities without
any additional processing of the transcriptions.

Table 3: Word Error Rate generic

Model Time Rec 0 Rec 1 Rec 2 Rec 3 Average Score
generic 1.14 30.50 23.42 31.22 41.38 31.63
generic� interpolated 1.03 30.50 23.42 31.22 41.38 31.63

Table 4: Named Entity Recognition generic

Model Weights Rec 0 Rec 1 Rec 2 Rec 3 Sum
generic

true positives 0 0 0 0 0
false positives 0 0 0 0 0
false negatives 2 2 8 8 20
generic interpolated 50/50
true positives 0 0 0 0 0
false positives 0 0 0 0 0
false negatives 2 2 8 8 20

25

5.1 Stochastic Model Results

The results of running the statistical-based tagged n-gram models on the test
recordings can be found in Table 5, a summary of Table 9 and Table 10 found in
Appendix A. The models are named on the format tngXY where X refers to the
models n-gram size and Y the depth used in the hypothesis search algorithm.

It can be observed that the tng models correctly transcribes about two out
of three words with a WER close to 30, slightly lower than the generic model
benchmark. As shown in Table 10 the models found 19 of the total 20 named
entities. However, the models are biased towards finding named entities as
illustrated by the 12-14 false positives in the transcriptions which in turn has
an effect on the F1 � score, where the best models had a score of 0.7547. It
should be noted that the smaller trie-gram models performed the best in both
WER and F1� score.

Table 5: Results tng

Model WER F1

tng33 29.97 0.7547
tng43 30.26 0.7547
tng44 30.39 0.7273
tng53 29.97 0.7547
tng54 30.39 0.7273
tng55 30.61 0.7273
tng63 29.97 0.7547
tng64 30.68 0.7273
tng65 30.61 0.7273
tng66 30.67 0.7273

26

5.2 Neural Net Model Results

Table 6 contains a summary of the result tables Table 11 and Table 12 found in
Appendix B. Compared with the results in Table 5 the NLM model performed
significantly worse in terms of WER and NER relative to the SLM counterpart
using the same search depth. This can be illustrated by comparing the best
model, tng33, with a WER of 29.97 and F1� score of 0.7547 against the best
performing NLM configuration, nlm5, with a WER of 40.90 and F1 � score

of 0.7143, which is worse than the worst performing tng models as well as the
generic model benchmark of a 31.63 WER.

Furthermore, provided that CPU:s were used to perform neural network ac-
tivation’s calculations, instead of GPU:s, the recordings were transcribed by a
magnitude slower than the hash set based implementation of the SLM. While
this comes to no surprise to the authors, due to the nature of neural net calcu-
lations, it is worth noting the significant increase in runtime as the hypothesis
search depth increases.

Table 6: Results nlm

Model WER F1

nlm3 41.00 0.6897
nlm4 40.95 0.7018
nlm5 40.90 0.7143
nlm6 41.15 0.7143

5.3 Interpolated Model Results

Table 7 shows the domain-specific models examined with the same search depth
as the size of the generic trie-gram model. The tng33 model gets a better WER
and F1-score when interpolated with the generic model. While the nlm3 model
also gets a clear improvement compared to running the model by itself it does
not perform any better than running the SLMs.

A slightly better WER than running the tng33 model alone was achieved
by interpolating the tng33 with the nlm3 configuration as seen in Table 7,
however with a runtime penalty. This inspired the three model interpolation
tng33/nlm3/generic which can be found in Table 8. Combining the two differ-
ent types of domain-specific models with the generic model in a 25/25/50 percent
split yielded the best result in terms of WER, with a 25.08 WER, wheres the
best model in terms of NER was the 5/5/90 percent split with an F1-score of
0.9091.

The trie-gram model, five-gram and six-gram models had similar, yet dif-
ficult to compare, WER when used to transcribe the recordings on their own.
The reason for this is because the models performed slightly better then the
other on different recordings. However, a more noticeable difference appear
when interpolated with the generic model. As seen in Table 13 and Table 14
in Appendix C, the trie-gram models clearly outperforms the larger domain-
specific n-gram models when interpolated with the generic model. The larger

27

domain-specific n-gram model is used alone for scoring word sequence searches
longer than three words due to the generic model being a trie-gram model. The
conclusion being that that you do not gain a better WER using a relatively
small, and therefore biased, domain-specific model with a deeper depth than
your larger generic model when interpolating the two.

Table 7: Interpolated Model Results
Model Weights WER F1

tng33/generic 10/90 27,77 0.8000
tng33/generic 20/80 26,81 0.8000
tng33/generic 30/70 26.52 0.8000
tng33/generic 40/60 26,07 0.8000
tng33/generic 50/50 25,75 0.8000
tng33/generic 60/40 25,87 0.8000
tng33/generic 70/30 26,08 0.8000
tng33/generic 80/20 25,97 0.8000
tng33/generic 90/10 26,44 0.7843
nlm3/generic 10/90 30.93 0.7407
nlm3/generic 20/80 30.41 0.7273
nlm3/generic 30/70 29.84 0.7407
nlm3/generic 40/60 29.62 0.7407
nlm3/generic 50/50 29.74 0.7547
nlm3/generic 60/40 29.93 0.7692
nlm3/generic 70/30 30.60 0.7547
nlm3/generic 80/20 32.04 0.7547
nlm3/generic 90/10 33.42 0.7547
tng33/nlm3 10/90 35.04 0.7407
tng33/nlm3 20/80 33.69 0.7843
tng33/nlm3 30/70 32.64 0.7843
tng33/nlm3 40/60 31.55 0.7843
tng33/nlm3 50/50 31.13 0.7692
tng33/nlm3 60/40 30.67 0.7692
tng33/nlm3 70/30 30.39 0.7547
tng33/nlm3 80/20 29.64 0.7692
tng33/nlm3 90/10 29.04 0.7547

28

Table 8: Results tng33/nlm3/generic
Model Weights WER F1

tng33/nlm3/generic 5/5/90 27.02 0.9091
tng33/nlm3/generic 10/10/80 26.46 0.8889
tng33/nlm3/generic 25/25/50 25.08 0.8333
tng33/nlm3/generic 30/30/40 25.14 0.8333
tng33/nlm3/generic 33/33/33 25.28 0.8511
tng33/nlm3/generic 40/40/20 26.01 0.8333
tng33/nlm3/generic 45/45/10 27.18 0.8000

6 Discussion
The results indicate that when interpolating a larger generic LM with a smaller
domain-specific model, the search depth for each model is important to be
aligned. Otherwise, the model with larger depth may take over as soon as the
word length considered by the word search algorithm, leading to unintended re-
sults when interpolating multiple models. In our case, this gave disproportional
weight to the domain-specific models and a higher WER, even in non-domain-
specific sentences as can be noted when comparing the model tng66/generic to
tng33/generic as shown in Appendix C.

Furthermore, the relatively high WER and number of false positive NEs of
the NLM based model configurations, in comparison to the SLMs, suggests that
the model was over-fitted to the training set. This is supported by the shape
taken by the loss score in the training graph, Fig. 14, and validation graph,
Fig. 15, which are exhibiting an L-shaped form. The L-shaped form is an
indication that the model weights are being adjusted too much and over-fitted
during the training process, in contrast to a more rounded shape which would
indicate an appropriate learning rate. However, provided the long training time
on the hardware available to the authors it was unfeasible within the scope of
this project to both lower the learning rate and let the training process run
for more epochs. This is however something that we believe could improve the
results in terms of WER and NER for the NLM model individually as well as
interpolated together with another domain-specific model and generic model,
like the 25/25/50 and 5/5/90 models.

The worsening WER score seen in the SLM with an n-gram value of above 3 is
likely due to the size of the corpus. As discussed in section 4.3.3, when increasing
the length of the sentences not enough statistical information is collected in order
to make a good prediction. In other words, there aren’t enough repetitions
of sentences of length 4 or above in order to create any meaningful statistical
probability. With a larger corpus, the same sentences would be repeated enough
to create a better prediction.

It is evident from the high number of false positives that both model types
are indeed very biased towards finding the instruments in the voice recordings.
It is not difficult to understand why when contemplating that all different in-

29

struments where replaced by a single tag. This tag then gets the accumulated
probability of all different instruments it replaced.

However, all models were able to find all true positives except for one, and the
question became one of achieving a lower WER and reducing false positives. It
was observed that it may be possible to lower the domain-specific influence below
the tested 10%, indicating that smaller domain-specific weights may be worth
exploring. However, the 5/5/90 model was found to be the best performing
model overall, even though it had a slightly worse WER than the 25/25/50 and
30/30/40 models.

The fact that the models when combined produced a better score in terms
of NER false positives, compared to when running individually, shows that
the different models have different strengths. When combined they essentially
cancelled each others "mistakes" out.

The relation between the best performer in terms of WER and NER as shown
in Table 8 illustrates that the different aspects of the system is not balanced.
Increasing the influence of the two domain specific models to a combined influ-
ence of 50% yielded the best results in terms of WER but rendered the number
of false positives so high that the weight distribution is almost unusable. How-
ever, when pushing the generic model forward in order to reduce the number
of false positives a heavy toll was put on the WER score. This shows that the
tools for calibrating the systems are blunt and would need to be reconsidered
in an applied setting. In other words, it would be helpful to be able to tune the
probability of a tagged entity by it’s own and not only by influencing the whole
transcription.

Ultimately, the choice of the best model may depend on the business case
and the importance of reducing false positives versus accurate transcriptions.
However, it is worth noting that the 5/5/90 model greatly reduced false positives
when the NLM and SLMs were interpolated together. This indicates that these
models have learned different ways of understanding the domain and can work
better together to improve the accuracy of transcriptions.

Voice trading calls are typically not transcribed in a systematic way by re-
spective organization as a part of trading, broking nor compliance. This means
that quality data for model trading is not available for each independent institu-
tion that would benefit from a AVTS system. While the argument made about
instrument and other name entity lists is that less data is needed for these mod-
els to be trained and used in the AVTS system, there is a question around the
accuracy of the actual transcription and how heavily compliance personnel can
rely on an automatic transcription versus listening to the actual call. Minor vari-
ances in phrasing and pronunciation can make a major difference to the meaning
of said sentence. As a consequence, the question of whether a compliance offi-
cer’s ethical responsibility to follow up alerts generated by the AVTS system can
be elevated by dismissing alerts based on the automatic transcription is up for
discussion. Should compliance officers be given the opportunity to do so at all
or should the AVTS system simply supply hints of relevant discussions between
brokers and clients, and only provide additional context to market events? The
question is in part about how accurate transcriptions the system actually deliv-

30

ers. While most financial applications require absolute precision in the features
they provide and hence should take serious caution in terms of conveying the
output of difficult to explain methods, such as neural networks or approximation
search heuristics, as an absolute truth to the end user, there is a case for the
claim that voice trading surveillance may be subject to less strict precision re-
quirements compared to other financial applications e.g. software that handles
transfer of value like trading engines or banking systems. As long as the NER of
instruments are accurate enough to provide compliance officers with a tool that
can point them in the right direction in terms of linking electronic records of
voice trades with likely candidates of phone calls where the trade was actually
agreed it will go a long way in terms of helping financial market participants to
comply with regulation. When it comes to displaying transcriptions made by
the AVTS system however, it is important that the impression is not given that
automatic transcriptions should be considered the absolute truth about what
was being said between two humans and should be taken at face value. The less
accurate transcriptions the system can guarantee the more logical it becomes to
display meta data and analysis based on the transcription to the users, rather
than the transcription itself.

7 Conclusion and Future Work
The study of interpolating smaller domain-specific models, in the financial do-
main, with a larger generic model proved successful, in relation to the criteria
stated in section 4, as the WER was improved by interpolation and more than
75% of the NEs were found by all models. Furthermore, the AVTS system
achieved decent accuracy by tuning the interpolation weights and the authors
does consider the proof-of-concept successful provided that the model with the
highest transcription accuracy, 25/25/50, only fell short of a 0.08 WER to the
25 WER criteria and that the model had an F1-score above 0.8. Additionally,
the authors think that the 5/5/90 model also deserves a mention in relation to
the criteria with an F1-score of 0.9091, even though it had a WER of 27.02.
This means that the proposed AVTS system, and the method of instrument
abstraction, is worthy of further evaluation and study.

While simple asset classes can be covered by the model by using the NE
abstraction < i > instrument tag, more complex asset classes like forwards and
futures may benefit from more complex tag structures. Futures are contracts
that oblige the holder to purchase a specific asset in the future at a specific
price and date. These instruments are traditionally used to hedge against price
fluctuation risks for industries producing or trading commodities. New contracts
are created every day as dates mature with some interval e.g. three months, five
months, one year etc. For this reason, new unique names are created every day.
Instead of adding an infinite number of contract names to the vocabulary for the
AVTS system to be able to transcribe them, one could divide future contract
NE abstractions into parts e.g. < i date > for dates, < i price > for prices
like settlement or strike price and < i asset > for the underlying commodity

31

or other types of assets a contract is issued for. This way the AVTS models
will be able to learn about complex contracts name structures while keeping
configuration to a minimum.

Further analysis on the relationship between the number of configured in-
strument phonetic transcriptions and NER is warranted considering the low
number of instruments included in the OMX30 index, Appendix F, which was
used in the experiments compared to the full range of tradable instruments at
an exchange. It is likely that the more phonetic transcriptions configured in the
AVTS system, the worse the effect on WER and NE false positives due to the
bias for instrument tag < i > of the domain-specific models discussed in section
6.

Adapting the acoustic model will most certainly be of the utmost impor-
tance when implementing a production AVTS system. When the results for
this report was produced, the recordings were done in a controlled environment
with American English, the accent the AM is created for, and with very low
background noise. In other words, the SNR was very high, with none, or very
little, disturbance. In a production environment these conditions would most
likely not be replicated and would likely do significant harm to the accuracy of
the application. In order to help alleviate a lower SNR, the acoustic model can
be adapted to any relevant accents or background noise.

8 Acknowledgements
The authors of this report would like to thank Scila AB that commissioned
this Master’s Thesis work and provided valuable feedback and the means to
implement this project.

A special thank you to the native American English speaking students from
Vanderbilt University in Nashville, Tennessee that provided us with the record-
ings used to evaluate the system.

The WER algorithm that has been used to measure the progress and success
of the system has been developed by Martin Thoma, who was gracious enough
to let us use if for purposes of this report [33].

32

References
[1] 111th Congress. Dodd–Frank Wall Street Reform and Consumer Protection

Act. https://www.congress.gov/bill/111th-congress/house-bill/
04173#major%20actions, 2010. [Online; accessed 3-Apr-2017].

[2] European Securities and Markets Authority. ESMA. https://www.esma.
europa.eu/, 2017. [Online; accessed 7-Jan-2017].

[3] European Parliament, of the Council, and Commission Directives. Market
Abuse Regulation. http://eur-lex.europa.eu/legal-content/EN/TXT/
PDF/?uri=CELEX:32014R0596&from=EN, 2014. [Online; accessed 3-Oct-
2016].

[4] Dong Yu and Li Deng. Automatic Speech Recognition: A Deep Learning

Approach. Springer, 2015.

[5] Paul Lamere, Philip Kwok, William Walker, Evandro B Gouvêa, Rita
Singh, Bhiksha Raj, and Peter Wolf. Design of the cmu sphinx-4 decoder.
In INTERSPEECH. Citeseer, 2003.

[6] Willie Walker, Paul Lamere, Philip Kwok, Bhiksha Raj, Rita Singh, Evan-
dro Gouvea, Peter Wolf, and Joe Woelfel. Sphinx-4: A flexible open source
framework for speech recognition. 2004.

[7] CMU Sphinx 4 development team. Denoise Signal. http://cmusphinx.
sourceforge.net/doc/sphinx4/edu/cmu/sphinx/frontend/denoise/
Denoise.html, 2016. [Online; accessed 14-Nov-2016].

[8] Gerhard Doblinger. Computationally efficient speech enhancement by spec-
tral minima tracking in subbands. Power, 1:2, 1995.

[9] Yuuki Tachioka, Shinji Watanabe, Jonathan Le Roux, and John R Hershey.
Discriminative methods for noise robust speech recognition: A chime chal-
lenge benchmark. Proc. CHiME-2013, Vancouver, Canada, pages 19–24,
2013.

[10] Andrew Maas, Quoc V Le, Tyler M O’neil, Oriol Vinyals, Patrick Nguyen,
and Andrew Y Ng. Recurrent neural networks for noise reduction in robust
asr. 2012.

[11] Simone Cifani, Emanuele Principi, Cesare Rocchi, Stefano Squartini, and
Francesco Piazza. A multichannel noise reduction front-end based on psy-
choacoustics for robust speech recognition in highly noisy environments. In
Hands-Free Speech Communication and Microphone Arrays, 2008. HSCMA

2008, pages 172–175. IEEE, 2008.

[12] Hynek Hermansky. Perceptual linear predictive (plp) analysis of speech.
the Journal of the Acoustical Society of America, 87(4):1738–1752, 1990.

33

https://www.congress.gov/bill/111th-congress/house-bill/04173#major%20actions
https://www.congress.gov/bill/111th-congress/house-bill/04173#major%20actions
https://www.esma.europa.eu/
https://www.esma.europa.eu/
http://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32014R0596&from=EN
http://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32014R0596&from=EN
http://cmusphinx.sourceforge.net/doc/sphinx4/edu/cmu/sphinx/frontend/denoise/Denoise.html
http://cmusphinx.sourceforge.net/doc/sphinx4/edu/cmu/sphinx/frontend/denoise/Denoise.html
http://cmusphinx.sourceforge.net/doc/sphinx4/edu/cmu/sphinx/frontend/denoise/Denoise.html

[13] Sirko Molau, Michael Pitz, Ralf Schluter, and Hermann Ney. Computing
mel-frequency cepstral coefficients on the power spectrum. In Acoustics,

Speech, and Signal Processing, 2001. Proceedings.(ICASSP’01). 2001 IEEE

International Conference on, volume 1, pages 73–76. IEEE, 2001.

[14] Daniel Povey Oriol Vinyals, Suman Ravuri. Revisiting recurrent neural net-
works for robust asr. IEEE International Confrence on Acoustics, Speech,
and Signal Processing (ICASSP), March 2012.

[15] Graham Upton and Ian Cook. A dictionary of statistics 3e. Oxford uni-
versity press, 2014.

[16] CMU Sphinx 4 development team. Acoustic Model. https://cmusphinx.
github.io/wiki/acousticmodeltypes/. [Online; accessed 2-Mar-2020].

[17] Wikipedia. Acoustic model, howpublished = "https://en.wikipedia.
org/wiki/Acoustic_model", year = 2020.

[18] Dimitar D. Deliyski. Acoustic model and evaluation of pathological voice
production. 1993.

[19] Dan Jurafsky and James H Martin. Speech and language processing. Pear-
son, 2014.

[20] Mehryar Mohri, Fernando Pereira, and Michael Riley. Speech recognition
with weighted finite-state transducers. In Springer Handbook of Speech

Processing, pages 559–584. Springer, 2008.

[21] Slava Katz. Estimation of probabilities from sparse data for the language
model component of a speech recognizer. IEEE transactions on acoustics,

speech, and signal processing, 35(3):400–401, 1987.

[22] Yoshua Bengio, Réjean Ducharme, Pascal Vincent, and Christian Jauvin. A
neural probabilistic language model. journal of machine learning research,
3(Feb):1137–1155, 2003.

[23] Tomas Mikolov, Martin Karafiát, Lukas Burget, Jan Cernockỳ, and San-
jeev Khudanpur. Recurrent neural network based language model. In
Interspeech, volume 2, page 3, 2010.

[24] Yoshua Bengio, Patrice Simard, and Paolo Frasconi. Learning long-term
dependencies with gradient descent is difficult. IEEE transactions on neural

networks, 5(2):157–166, 1994.

[25] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neu-

ral computation, 9(8):1735–1780, 1997.

[26] Felix Gers. Long short-term memory in recurrent neural networks. PhD
thesis, Universität Hannover, 2001.

34

https://cmusphinx.github.io/wiki/acousticmodeltypes/
https://cmusphinx.github.io/wiki/acousticmodeltypes/
https://en.wikipedia.org/wiki/Acoustic_model
https://en.wikipedia.org/wiki/Acoustic_model

[27] Xunying Liu, Xie Chen, Yongqiang Wang, Mark JF Gales, and Philip C
Woodland. Two efficient lattice rescoring methods using recurrent neural
network language models. IEEE/ACM Transactions on Audio, Speech, and

Language Processing, 24(8):1438–1449, 2016.

[28] Holger Schwenk. Continuous space language models. Computer Speech &

Language, 21(3):492–518, 2007.

[29] Dr. A.N.Cheeran Siddhant C. Joshi. Matlab based back-propagation neu-
ral network for automatic speech recognition. International Journal of Ad-

vanced Research in Electrical, Electronics and Instrumentation Engineer-

ing, 2014.

[30] RUSLAN SUVOROV JOHN LEVIS. Automatic speech recognition. 2012.

[31] Andrey Simanovsky Maksim Tkachenko. Named entity recognition: Ex-
ploring features. 5, 2012.

[32] Ali Mamat Alireza Mansouri, Lilly Suriani Affendey. Named entity recog-
nition approaches. IJCSNS International Journal of Computer Science and

Network Security, Febuary 2008.

[33] Martin Thoma. Word Error Rate Calculation. https://martin-thoma.
com/word-error-rate-calculation/, 2013.

35

https://martin-thoma.com/word-error-rate-calculation/
https://martin-thoma.com/word-error-rate-calculation/

Acronyms
AM Acoustic Model. 4, 6, 7, 32

ASR Automatic Speech Recognition. 3–5, 7, 13–17, 19, 23

AVTS Automatic Voice Trade Surveillance. 3, 14–17, 19–21, 25, 30–32

CMU Carnegie Mellon University. 5, 6, 19, 22

D4J Deeplearning4j. 23

DFA Dodd–Frank Wall Street Reform and Consumer Protection Act. 3

DNN Deep Neural Network. 3, 12, 13

ESMA European Securities and Markets Authority. 3

FST Finite State Transducer. 7, 8, 12

G2P Grapheme to Phoneme. 18

HMM Hidden Markov Model. 5–7, 13, 17, 22

LM Language Model. 4, 6, 7, 12, 14, 16, 17, 19, 20, 22, 23, 29

LSTM Long Short-Term Memory. 12

MFCC Mel-Frequency Cepstral Coefficients. 5

NE Named Entity. 14, 15, 19, 20, 29, 31, 32

NER Named Entity Recognition. 3, 13, 14, 25, 27, 29–32

NLM Neural Language Model. 10, 23, 24, 27, 29, 30

OOV Out-of-Vocabulary. 17, 22

PLP Perceptual Linear Prediction. 5

PTM Phonetically tied model. 6

RNN Recurrent Neural Net. 10, 12, 23

SLM Stochastic Language Model. 7, 8, 22, 23, 27, 29, 30

SNR Signal-to-noise ratio. 5, 32

WER Word Error Rate. 4, 5, 14, 15, 25–32

36

Glossary
Market Data

Data generated by financial market market systems e.g. metadata of
trades and orders such as price, volume and involved parties. 14

Markov Chain
A Markov Process is defined as a Markov Chain if all states has a common,
finite number of outputs [15]. 7

Markov Process
A finite stochastic process where all states adhere to the Markov Property
[15]. 5, 7, 37

Markov Property
The value of state st, at time t, is independent of all states prior to st�1

[15]. 5, 37

Voice Trading
Industy term for trading performed over a call with a stock market broker.
3

A Statistic Language Model Results

Table 9: Word Error Rate tng

Model Time Rec 0 Rec 1 Rec 2 Rec 3 Average
tng33 0.82 27.80 24.54 30.98 36.55 29.97
tng43 0.79 28.96 24.54 30.98 36.55 30.26
tng44 0.90 29.73 23.05 30.49 38.28 30.39
tng53 0.79 27.80 24.54 30.98 36.55 29.97
tng54 0.91 29.73 23.05 30.49 38.28 30.39
tng55 1.01 30.50 22.68 30.98 38.28 30.61
tng63 0.81 27.80 24.54 30.98 36.55 29.97
tng64 0.94 30.89 23.05 30.49 38.28 30.68
tng65 1.09 30.50 22.68 30.98 38.28 30.61
tng66 1.17 30.50 22.68 31.22 38.28 30.67

37

Table 10: Named Entity Recognition tng

Rec 0 Rec 1 Rec 2 Rec 3 Sum F1

tng33
true positives 2 2 7 8 19
false positives 1 3 5 3 12 0.7547
false negatives 0 0 1 0 1
tng43
true positives 2 2 7 8 19
false positives 1 3 5 3 12 0.7547
false negatives 0 0 1 0 1
tng44
true positives 2 2 7 8 19
false positives 1 4 6 3 14 0.7273
false negatives 0 0 1 0 1
tng53
true positives 2 2 7 8 19
false positives 1 3 5 3 12 0.7547
false negatives 0 0 1 0 1
tng54
true positives 2 2 7 8 19
false positives 1 4 6 3 14 0.7273
false negatives 0 0 1 0 1
tng55
true positives 2 2 7 8 19
false positives 1 4 6 3 14 0.7273
false negatives 0 0 1 0 1
tng63
true positives 2 2 7 8 19
false positives 1 3 5 3 12 0.7547
false negatives 0 0 1 0 1
tng64
true positives 2 2 7 8 19
false positives 1 4 6 3 14 0.7273
false negatives 0 0 1 0 1
tng65
true positives 2 2 7 8 19
false positives 1 4 6 3 14 0.7273
false negatives 0 0 1 0 1
tng66
true positives 2 2 7 8 19
false positives 1 4 6 3 14 0.7273
false negatives 0 0 1 0 1

38

B Neural Languagel Model Results

Table 11: Word Error Rate nlm

Model Time Rec 0 Rec 1 Rec 2 Rec 3 Average
nlm3 11.89 44.40 39.78 37.07 42.76 41.00
nlm4 23.80 42.86 41.26 36.59 43.10 40.95
nlm5 30.34 42.08 41.64 36.10 43.79 40.90
nlm6 34.81 42.86 41.64 35.61 44.48 41.15

Table 12: Named Entity Recognition nlm

Rec 0 Rec 1 Rec 2 Rec 3 Sum F1

nlm3

true positives 2 2 7 8 19
false positives 4 7 3 3 17 0.6897
false negatives 0 0 1 0 1
nlm4

true positives 2 2 7 8 19
false positives 3 8 3 2 16 0.7018
false negatives 0 0 1 0 1
nlm5

true positives 2 2 7 8 19
false positives 2 8 3 2 15 0.7143
false negatives 0 0 1 0 1
nlm6

true positives 2 2 7 8 19
false positives 2 8 3 2 15 0.7143
false negatives 0 0 1 0 1

39

C Two Models Interpolation Result

Table 13: Interpolated Model Word Error Rate
Model Weights Time Rec 0 Rec 1 Rec 2 Rec 3 Average
tng33/generic 10/90 1.08 26.64 21.19 26.34 36.90 27.77
tng33/generic 20/80 1.80 25.48 20.07 25.12 36.55 26.81
tng33/generic 30/70 1.20 26.25 18.96 25.37 35.52 26.52
tng33/generic 40/60 0.74 25.48 18.96 25.37 34.48 26.07
tng33/generic 50/50 0.88 25.10 18.22 24.88 34.83 25.75
tng33/generic 60/40 0.70 24.71 18.22 25.37 35.17 25.87
tng33/generic 70/30 0.74 24.71 18.59 25.85 35.17 26.08
tng33/generic 80/20 1.00 23.94 18.59 25.85 35.52 25.97
tng33/generic 90/10 0.72 25.48 19.70 26.10 34.48 26.44
tng66/generic 10/90 0.98 31.66 23.79 29.76 37.93 30.78
tng66/generic 20/80 0.94 31.27 24.16 30.00 37.59 30.76
tng66/generic 30/70 0.94 31.27 24.16 30.24 37.59 30.82
tng66/generic 40/60 1.00 31.27 23.79 30.00 37.59 30.66
tng66/generic 50/50 1.00 31.27 23.42 29.02 37.24 30.24
tng66/generic 60/40 0.96 31.27 22.68 29.51 37.24 30.18
tng66/generic 70/30 0.93 31.27 23.05 29.27 37.93 30.38
tng66/generic 80/20 0.91 31.66 22.30 29.27 38.28 30.38
tng66/generic 90/10 0.91 31.27 22.30 30.24 38.28 30.52

Table 14: Interpolated Model Word Error Rate
Model Weights Time Rec 0 Rec 1 Rec 2 Rec 3 Average
nlm3/generic 10/90 9.21 32.43 24.91 28.78 37.59 30.93
nlm3/generic 20/80 9.28 31.66 26.02 27.07 36.90 30.41
nlm3/generic 30/70 9.39 29.73 26.02 27.07 36.55 29.84
nlm3/generic 40/60 9.50 30.12 26.02 26.83 35.52 29.62
nlm3/generic 50/50 9.57 30.12 25.65 27.32 35.86 29.74
nlm3/generic 60/40 9.61 30.12 26.77 27.32 35.52 29.93
nlm3/generic 70/30 9.66 30.89 26.77 28.54 36.21 30.6
nlm3/generic 80/20 9.74 32.43 28.25 30.24 37.24 32.04
nlm3/generic 90/10 9.81 34.75 30.11 31.22 37.59 33.42
nlm5/generic 10/90 27.34 40.93 41.26 34.39 43.45 40.01
nlm5/generic 20/80 48.28 41.70 40.52 34.88 43.10 40.05
nlm5/generic 30/70 26.73 41.70 40.52 34.63 43.10 39.99
nlm5/generic 70/30 26.70 40.93 40.52 34.63 43.10 39.80
nlm5/generic 80/20 26.60 40.93 40.89 36.10 43.10 40.25
nlm5/generic 90/10 26.57 40.93 41.26 36.83 43.10 40.53

40

Table 15: Interpolated Model Word Error Rate
Model Weights Time Rec 0 Rec 1 Rec 2 Rec 3 Average
tng33/nlm3 10/90 12.09 35.91 30.86 33.41 40.00 35.04
tng33/nlm3 20/80 11.66 35.52 27.88 31.71 39.66 33.69
tng33/nlm3 30/70 11.59 34.75 25.28 31.22 39.31 32.64
tng33/nlm3 40/60 11.41 33.98 24.16 30.49 37.59 31.55
tng33/nlm3 50/50 11.29 32.05 24.54 30.00 37.93 31.13
tng33/nlm3 60/40 11.18 31.66 23.42 30.00 37.59 30.67
tng33/nlm3 70/30 11.03 30.89 23.79 30.00 36.90 30.39
tng33/nlm3 80/20 10.82 28.19 24.16 30.00 36.21 29.64
tng33/nlm3 90/10 10.82 28.19 23.05 29.76 35.17 29.04
tng65/nlm5 10/90 30.02 35.14 33.46 33.17 37.59 34.84
tng65/nlm5 20/80 29.81 33.59 29.37 32.93 36.90 33.20
tng65/nlm5 30/70 83.11 32.82 26.02 31.95 38.28 32.27
tng65/nlm5 70/30 26.62 28.96 25.28 31.46 36.21 30.48
tng65/nlm5 80/20 26.15 27.80 23.79 31.46 37.24 30.07
tng65/nlm5 90/10 25.46 29.34 22.30 31.22 37.24 30.03

41

Table 16: Named Entity Recognition tng33/generic
Weights Rec 0 Rec 1 Rec 2 Rec 3 Sum F1

10/90
true positives 2 2 7 8 19
false positives 0 3 2 4 9 0.8000
false negatives 0 0 1 0 1

20/80
true positives 2 2 7 8 19
false positives 0 3 2 4 9 0.8000
false negatives 0 0 1 0 1

30/70
true positives 2 2 7 8 19
false positives 0 3 2 4 9 0.8000
false negatives 0 0 1 0 1

40/60
true positives 2 2 7 8 19
false positives 0 3 3 4 9 0.8000
false negatives 0 0 1 0 1

50/60
true positives 2 2 7 8 19
false positives 0 3 3 4 9 0.8000
false negatives 0 0 1 0 1

60/40
true positives 2 2 7 8 19
false positives 0 4 3 4 9 0.8000
false negatives 0 0 1 0 1

70/30
true positives 2 2 7 8 19
false positives 0 4 3 4 9 0.8000
false negatives 0 0 1 0 1

80/20
true positives 2 2 7 8 19
false positives 0 4 3 4 9 0.8000
false negatives 0 0 1 0 1

90/10
true positives 2 2 7 8 19
false positives 1 4 3 4 10 0.7843
false negatives 0 0 1 0 1

42

Table 17: Named Entity Recognition tng66/generic
Weights Rec 0 Rec 1 Rec 2 Rec 3 Sum F1

10/90
true positives 2 2 7 8 19
false positives 2 4 4 4 14 0.7273
false negatives 0 0 1 0 1

20/80
true positives 2 2 7 8 19
false positives 2 4 4 4 14 0.7273
false negatives 0 0 1 0 1

30/70
true positives 2 2 7 8 19
false positives 1 4 4 3 12 0.7547
false negatives 0 0 1 0 1

40/60
true positives 2 2 7 8 19
false positives 1 4 4 3 12 0.75471
false negatives 0 0 1 0 1

50/50
true positives 2 2 7 8 19
false positives 1 4 4 4 13 0.7407
false negatives 0 0 1 0 1

60/40
true positives 2 2 7 8 19
false positives 1 4 4 4 13 0.7407
false negatives 0 0 1 0 1

70/30
true positives 2 2 7 8 19
false positives 1 4 4 4 13 0.7407
false negatives 0 0 1 0 1

80/20
true positives 2 2 7 8 19
false positives 1 4 4 4 13 0.7407
false negatives 0 0 1 0 1

90/10
true positives 2 2 7 8 19
false positives 1 4 6 4 15 0.7143
false negatives 0 0 1 0 1

43

Table 18: Named Entity Recognition nlm3/generic

Weights Rec 0 Rec 1 Rec 2 Rec 3 Sum F1

10/90
true positives 2 2 7 8 19
false positives 1 6 3 3 13 0.7407
false negatives 0 0 1 0 1

20/80
true positives 2 2 7 8 19
false positives 1 7 3 3 14 0.7273
false negatives 0 0 1 0 1

30/70
true positives 2 2 7 8 19
false positives 0 7 3 3 13 0.7407
false negatives 0 0 1 0 1

40/60
true positives 2 2 7 8 19
false positives 0 7 3 3 13 0.7407
false negatives 0 0 1 0 1

50/50
true positives 2 2 7 8 19
false positives 0 7 2 3 12 0.7547
false negatives 0 0 1 0 1

60/40
true positives 2 2 7 8 19
false positives 0 6 2 3 11 0.7692
false negatives 0 0 1 0 1

70/30
true positives 2 2 7 8 19
false positives 1 6 2 3 12 0.7547
false negatives 0 0 1 0 1

80/20
true positives 2 2 7 8 19
false positives 1 6 2 3 12 0.7547
false negatives 0 0 1 0 1

90/10
true positives 2 2 7 8 19
false positives 1 6 2 3 12 0.7547
false negatives 0 0 1 0 1

44

Table 19: Named Entity Recognition nlm5/generic

Weights Rec 0 Rec 1 Rec 2 Rec 3 Sum F1

10/90
true positives 2 2 7 8 19
false positives 3 8 4 2 17 0.6897
false negatives 0 0 1 0 1

20/80
true positives 2 2 7 8 19
false positives 3 8 4 2 17 0.6897
false negatives 0 0 1 0 1

30/70
true positives 2 2 7 8 19
false positives 3 8 4 2 17 0.6897
false negatives 0 0 1 0 1

70/30
true positives 2 2 7 8 19
false positives 2 8 4 2 16 0.7018
false negatives 0 0 1 0 1

80/20
true positives 2 2 7 8 19
false positives 2 8 4 2 16 0.7018
false negatives 0 0 1 0 1

90/10
true positives 2 2 7 8 19
false positives 2 8 3 2 15 0.7018
false negatives 0 0 1 0 1

45

Table 20: Named Entity Recognition tng33/nlm3

Weights Rec 0 Rec 1 Rec 2 Rec 3 Sum F1

10/90
true positives 2 2 7 8 19
false positives 3 4 3 3 13 0.7407
false negatives 0 0 1 0 1

20/80
true positives 2 2 7 8 19
false positives 2 3 2 3 10 0.7843
false negatives 0 0 1 0 1

30/70
true positives 2 2 7 8 19
false positives 2 3 2 3 10 0.7843
false negatives 0 0 1 0 1

40/60
true positives 2 2 7 8 19
false positives 2 3 2 3 10 0.7843
false negatives 0 0 1 0 1

50/50
true positives 2 2 7 8 19
false positives 2 3 3 3 11 0.7692
false negatives 0 0 1 0 1

60/40
true positives 2 2 7 8 19
false positives 1 3 4 3 11 0.7692
false negatives 0 0 1 0 1

70/30
true positives 2 2 7 8 19
false positives 1 4 4 3 12 0.7547
false negatives 0 0 1 0 1

80/20
true positives 2 2 7 8 19
false positives 1 3 4 3 11 0.7692
false negatives 0 0 1 0 1

90/10
true positives 2 2 7 8 19
false positives 1 3 5 3 12 0.7547
false negatives 0 0 1 0 1

46

Table 21: Named Entity Recognition tng65/nlm5

Weights Rec 0 Rec 1 Rec 2 Rec 3 Sum F1

10/90
true positives 2 2 7 8 19
false positives 2 5 3 3 13 0.7407
false negatives 0 0 1 0 1

20/80
true positives 2 2 7 8 19
false positives 2 4 3 3 12 0.7547
false negatives 0 0 1 0 1

30/70
true positives 2 2 7 8 19
false positives 2 4 3 3 12 0.7547
false negatives 0 0 1 0 1

70/30
true positives 2 2 7 8 19
false positives 1 4 5 3 13 0.7407
false negatives 0 0 1 0 1

80/20
true positives 2 2 7 8 19
false positives 1 3 5 3 12 0.7547
false negatives 0 0 1 0 1

90/10
true positives 2 2 7 8 19
false positives 1 4 6 3 14 0.7273
false negatives 0 0 1 0 1

D Three Models Interpolation Results

Table 22: Word Error Rate tng33/nlm3/generic
Model Weights Time Rec 0 Rec 1 Rec 2 Rec 3 Average
tng33/nlm3/generic 5/5/90 8.46 26.25 20.45 25.85 35.52 27.02
tng33/nlm3/generic 10/10/80 8.84 25.48 20.82 26.10 33.45 26.46
tng33/nlm3/generic 25/25/50 9.62 22.78 17.84 26.59 33.10 25.08
tng33/nlm3/generic 30/30/40 9.88 22.78 18.59 26.10 33.10 25.14
tng33/nlm3/generic 33/33/33 9.86 24.32 18.59 25.12 33.10 25.28
tng33/nlm3/generic 40/40/20 10.03 25.87 18.96 26.10 33.10 26.01
tng33/nlm3/generic 45/45/10 10.22 26.64 20.82 26.10 35.17 27.18

47

Table 23: Named Entity Recognition tng33/nlm3/generic

Model Weights Rec 0 Rec 1 Rec 2 Rec 3 Sum F1

5/5/90/
true positives 2 2 7 8 19
false positives 0 2 0 1 3 0.9091
false negatives 0 0 1 0 1

10/10/80/
true positives 2 2 7 8 19
false positives 0 3 0 1 4 0.8889
false negatives 0 0 1 0 1

25/25/50/
true positives 2 2 7 8 19
false positives 0 3 2 2 7 0.8333
false negatives 0 0 1 0 1

30/30/40/
true positives 2 2 7 8 19
false positives 0 3 2 2 7 0.8333
false negatives 0 0 1 0 1

33/33/33/
true positives 2 2 7 8 19
false positives 0 2 2 2 6 0.8511
false negatives 0 0 1 0 1

40/40/20/
true positives 2 2 7 8 19
false positives 0 2 2 3 7 0.8333
false negatives 0 0 1 0 1

45/45/10/
true positives 2 2 7 8 19
false positives 1 2 3 3 9 0.8000
false negatives 0 0 1 0 1

48

E Pronunciation Dictionary

Phoneme Example Translation
AA odd AA D
AE at AE T
AH hut HH AH T
AO ought AO T
AW cow K AW
AY hide HH AY D
B be B IY
CH cheese CH IY Z
D dee D IY
DH thee DH IY
EH Ed EH D
ER hurt HH ER T
EY ate EY T
F fee F IY
G green G R IY N
HH he HH IY
IH it IH T
IY eat IY T
JH gee JH IY
K key K IY
L lee L IY
M me M IY
N knee N IY
NG ping P IH NG
OW oat OW T
OY toy T OY
P pee P IY
R read R IY D
S sea S IY
SH she SH IY
T tea T IY
TH theta TH EY T AH
UH hood HH UH D
UW two T UW
V vee V IY
W we W IY
Y yield Y IY L D
Z zee Z IY
ZH seizure S IY ZH ER

Table sourced from http://www.speech.cs.cmu.edu/cgi-bin/cmudict, related
dictonary source files can be found at https://github.com/cmusphinx/cmudict.

49

F Instrument Dictionary

Instrument Phonetics
<i>ABB</i> EY B IY B IY
<i>ABB_Ltd</i> EY B IY B IY EH L T IY D IY
<i>ALFA</i> EY EH L EH F EY
<i>ALFA</i> AE L F AH
<i>Alfa_Laval</i> AE L F AH L AA V AA L
<i>ALIV_SDB</i> EY EH L AY V
<i>ALIV_SDB</i> EY EH L AY V IY S D IY B IY
<i>Autoliv</i> AO T OW L IH V
<i>Autoliv_SDB</i> AO T OW L IH V EH S D IY B IY
<i>ASSA_Abloy</i> AE S AH AH B L OY
<i>ASSA</i> AE S AH
<i>ASSA</i> EY EH S EH S EY
<i>ASSA_B</i> EY EH S EH S EY B IY
<i>ASSA_B</i> AE S AH B IY
<i>ASSA_Abloy_B</i> AE S AH AH B L OY B IY
<i>Atlas_Copco</i> AE T L AH S K AA P K OW
<i>Atlas_Copco</i> AE T L AH Z K AA P K OW
<i>Atlas_Copco</i> AE T L AH S K OW P K OW
<i>Atlas_Copco</i> AE T L AH Z K OW P K OW
<i>ATCO</i> AE K T OW
<i>ATCO</i> EY T IY S IY OW
<i>ATCO_A</i> AE K T OW EY
<i>ATCO_A</i> EY T IY S IY OW EY
<i>Atlas_Copco_A</i> AE T L AH S K AA P K OW EY
<i>Atlas_Copco_A</i> AE T L AH Z K AA P K OW EY
<i>Atlas_Copco_A</i> AE T L AH S K OW P K OW EY
<i>Atlas_Copco_A</i> AE T L AH Z K OW P K OW EY
<i>Atlas_Copco_A</i> AE T L AH S K AA P K OW B IY
<i>Atlas_Copco_A</i> AE T L AH Z K AA P K OW B IY
<i>Atlas_Copco_A</i> AE T L AH S K OW P K OW B IY
<i>Atlas_Copco_A</i> AE T L AH Z K OW P K OW B IY
<i>AstraZeneca</i> AE S T R AH Z EH N AH K AH
<i>AstraZeneca</i> AE S T R AH Z EH N EH K AH
<i>Boliden</i> B OW L IH D AH N
<i>Boliden</i> B OW L IH D EH N
<i>Boliden</i> B OW L IY D AH N
<i>Boliden</i> B OW L IY D EH N
<i>BOL</i> B OW EH L
<i>BOL</i> B AA L
<i>BOL</i> B OW L

50

Instrument Phonetics
<i>Electrolux</i> IH L EH K T R AH L AH K S
<i>Electrolux</i> EH L EH K T R AH L AH K S
<i>Electrolux</i> IH L EH K T R OW L AH K S
<i>Electrolux</i> EH L EH K T R OW L AH K S
<i>ELUX</i> IH L AH K S
<i>ELUX</i> IY EH L Y UW EH K S
<i>ELUX_B</i> IH L AH K S B IY
<i>ELUX_B</i> IY EH L Y UW EH K S B IY
<i>Electrolux_B</i> IH L EH K T R AH L AH K S B IY
<i>Electrolux_B</i> EH L EH K T R AH L AH K S B IY
<i>Electrolux_B</i> IH L EH K T R OW L AH K S B IY
<i>Electrolux_B</i> EH L EH K T R OW L AH K S B IY
<i>Ericsson</i> EH R IH K S AH N
<i>Ericsson</i> EH R IH K S AO N
<i>Ericsson</i> EH R IH K S AH N
<i>ERIC</i> EH R IH K
<i>ERIC</i> IY AA R AY S IY
<i>ERIC_B</i> EH R IH K B IY
<i>ERIC_B</i> IY AA R AY S IY B IY
<i>Ericsson_B</i> EH R IH K S AH N B IY
<i>Ericsson_B</i> EH R IH K S AO N B IY
<i>Fingerprint</i> F IH NG G ER P R IH N T
<i>Fingerprint_Cards</i> F IH NG G ER P R IH N T K AA R D Z
<i>Fingerprint_Cards_B</i> F IH NG G ER P R IH N T K AA R D Z B IY
<i>FING</i> F IH NG
<i>FING</i> EH F AY EH N JH IY
<i>FING_B</i> F IH NG B IY
<i>FING_B</i> EH F AY EH N JH IY B IY
<i>Getinge</i> G EH T IH NG EH
<i>Getinge</i> G EH T IH NG
<i>Getinge</i> JH EH T IH NG EH
<i>Getinge_B</i> G EH T IH NG EH B IY
<i>GETI_B</i> G EH T IH B IY
<i>GETI_B</i> G EH T AY B IY
<i>Hennes_&_Mauritz</i> EY CH AH N D EH M
<i>Hennes_&_Mauritz</i> HH EH N IY Z AH N D M AO R IH T S
<i>Hennes_&_Mauritz_B</i> EY CH AH N D EH M B IY
<i>Hennes_&_Mauritz_B</i> HH EH N IY Z AH N D M AO R IH T S B IY
<i>Investor</i> IH N V EH S T AO R
<i>Investor</i> IH N V EH S T ER
<i>Investor_B</i> IH N V EH S T AO R B IY
<i>Investor_B</i> IH N V EH S T ER B IY

51

Instrument Phonetics
<i>Kinnevik</i> K IH N IH V IH K
<i>Kinnevik</i> K IH N EH V IH K
<i>Kinnevik</i> CH IH N EH V IY K
<i>Lundin_Petroleum</i> L AH N D IH N P AH T R OW L IY AH M
<i>Lundin_Petroleum</i> L UH N D IH N P AH T R OW L IY AH M
<i>Lundin_Petroleum</i> L UW N D IH N P AH T R OW L IY AH M
<i>Lundin_Petroleum</i> L AH N D IH N P EH T R OW L IY AH M
<i>Lundin_Petroleum</i> L UH N D IH N P EH T R OW L IY AH M
<i>Lundin_Petroleum</i> L UW N D IH N P EH T R OW L IY AH M
<i>Nordea</i> N AO R D IY AH
<i>Nordea_Bank</i> N AO R D IY AH B AE NG K
<i>Sandvik</i> S AE N D V IH K
<i>Sandvik</i> S AE N D V IY K
<i>SCA</i> EH S S IY EY
<i>SCA_B</i> EH S S IY EY B IY
<i>SEB</i> EH S IY B IY
<i>SEB_A</i> EH S IY B IY EY
<i>Securitas</i> S IH K Y UH R AH T AH Z
<i>Securitas_B</i> S IH K Y UH R AH T AH Z B IY
<i>Sv_Handelsbanken</i> HH AE N D AH L S B AE NG K AH N
<i>Sv_Handelsbanken_A</i> HH AE N D AH L S B AE NG K AH N EY
<i>Skanska</i> S K AE N S K AH
<i>Skanska_B</i> S K AE N S K AH B IY
<i>SKF_B</i> EH S K EY EH F
<i>SKF_B</i> EH S K EY EH F B IY
<i>SSAB</i> EH S EH S EY B IY
<i>SSAB_A</i> EH S EH S EY B IY EY
<i>Swedbank</i> S W EH D B AH NG K
<i>Swedbank_A</i> S W EH D B AH NG K EY
<i>Swedish_Match</i> S W IY D IH SH M AE CH
<i>Tele2</i> T EH L AH T UW
<i>Tele2</i> T EH L EH T UW
<i>Tele2</i> T EH L IY T UW
<i>Tele2_B</i> T EH L AH T UW B IY
<i>Tele2_B</i> T EH L EH T UW B IY
<i>TELIA</i> T EH L IY AH
<i>TELIAs</i> T EH L IY AH S
<i>TELIAs</i> T EH L IY AH Z
<i>Telia_Company</i> T EH L IY AH K AH M P AH N IY
<i>Volvo</i> V OW L V OW
<i>Volvo_B</i> V OW L V OW B IY

52

G Number Dictionary

Number Phoneme
<n>one</n> W AH N
<n>one</n> HH W AH N
<n>one’s</n> W AH N Z
<n>two</n> T UW
<n>two’s</n> T UW Z
<n>three</n> TH R IY
<n>three’s</n> TH R IY Z
<n>four</n> F AO R
<n>four’s</n> F AO R Z
<n>five</n> F AY V
<n>five</n> F AY F
<n>five’s</n> F AY V Z
<n>six</n> S IH K S
<n>six’s</n> S IH K S IH Z
<n>seven</n> S EH V AH N
<n>seven’s</n> S EH V AH N Z
<n>eight</n> EY T
<n>eight’s</n> EY T S
<n>nine</n> N AY N
<n>nine’s</n> N AY N Z
<n>ten</n> T EH N
<n>ten’s</n> T EH N Z
<n>eleven</n> IH L EH V AH N
<n>eleven</n> IY L EH V AH N
<n>eleven’s</n> IH L EH V AH N Z
<n>eleven’s</n> IY L EH V AH N Z
<n>twelve</n> T W EH L V
<n>thirteen</n> TH ER T IY N
<n>thirteen’s</n> TH ER T IY N Z
<n>fourteen</n> F AO R T IY N
<n>fourteen’s</n> F AO R T IY N Z
<n>fifteen</n> F IH F T IY N
<n>fifteen’s</n> F IH F T IY N Z
<n>sixteen</n> S IH K S T IY N
<n>sixteen’s</n> S IH K S T IY N Z
<n>seventeen</n> S EH V AH N T IY N
<n>seventeen’s</n> S EH V AH N T IY N Z
<n>eighteen</n> EY T IY N
<n>eighteen’s</n> EY T IY N Z
<n>nineteen</n> N AY N T IY N
<n>nineteen’s</n> N AY N T IY N

53

Number Phoneme
<n>twenty</n> T W EH N T IY
<n>twenty</n> T W EH N IY
<n>twenty’s</n> T W EH N T IY Z
<n>twenty’s</n> T W EH N IY Z
<n>thirty</n> TH ER D IY
<n>thirty</n> TH ER T IY
<n>thirty’s</n> TH ER D IY Z
<n>thirty’s</n> TH ER T IY Z
<n>forty</n> F AO R T IY
<n>forty</n> F AO R D IY
<n>forty’s</n> F AO R T IY Z
<n>forty’s</n> F AO R D IY Z
<n>fifty</n> F IH F T IY
<n>fifty’s</n> F IH F T IY Z
<n>sixty</n> S IH K S T IY
<n>sixty’s</n> S IH K S T IY Z
<n>seventy</n> S EH V AH N T IY
<n>seventy’s</n> S EH V AH N T IY Z
<n>eighty</n> EY T IY
<n>eighty’s</n> EY T IY Z
<n>ninety</n> N AY N T IY
<n>ninety’s</n> N AY N T IY Z
<n>hundred</n> HH AH N D R AH D
<n>hundred</n> HH AH N D R IH D
<n>hundred</n> HH AH N ER D
<n>hundred</n> HH AH N D ER D
<n>hundreds</n> HH AH N D R IH D Z
<n>hundreds</n> HH AH N D ER D Z
<n>hundreds</n> HH AH N ER D Z
<n>hundreds</n> HH AH N D R AH D Z
<n>thousand</n> TH AW Z AH N D
<n>thousand</n> TH AW Z AH N
<n>thousands</n> TH AW Z AH N D Z
<n>thousands</n> TH AW Z AH N Z
<n>million</n> M IH L Y AH N
<n>millions</n> M IH L Y AH N Z
<n>billion</n> B IH L Y AH N
<n>billions</n> B IH L Y AH N Z
<n>milliard</n> M IH L Y AH R D
<n>trillion</n> T R IH L Y AH N
<n>trillions</n> T R IH L Y AH N Z
<n>market</n> M AA R K AH T
<n>market</n> M AA R K IH T

54

	Introduction
	Background
	Automatic Speech Recognition
	Signal Processing & Feature Extraction
	Hidden Markov Models
	Hypothesis Search
	Acoustic Model
	Language Model
	n-gram Transducer Models

	Neural Networks
	Neural Networks Based Language Models
	Recurrent Neural Networks
	Long Short-term Memory

	Language Model Interpolation

	Related Work
	Method
	Delimitations
	Corpus Composition
	Test Data
	Information Abstraction

	Implementation
	Web Crawler
	Corpus Parser
	Stochastic Language Model
	Identifying Named Entities
	Neural Net Implementation

	Results
	Stochastic Model Results
	Neural Net Model Results
	Interpolated Model Results

	Discussion
	Conclusion and Future Work
	Acknowledgements
	Acronyms
	Glossary
	Statistic Language Model Results
	Neural Languagel Model Results
	Two Models Interpolation Result
	Three Models Interpolation Results
	Pronunciation Dictionary
	Instrument Dictionary
	Number Dictionary

